-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodels_JAX.py
92 lines (59 loc) · 2.55 KB
/
models_JAX.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import jax.numpy as jnp
import jax
from jax.lax import complex
from utils import *
# initializer = jax.nn.initializers.glorot_uniform(in_axis=-3, out_axis=-2)
initializer = jax.nn.initializers.uniform(scale=1.)
def init_weights(group_order, irrep_dims):
keys = jax.random.split(jax.random.PRNGKey(42), len(irrep_dims))
return [(2. / d_i) * initializer(k, (group_order - 1, d_i, d_i, 2), jnp.float32) - (1. / d_i)
for k, d_i in zip(keys, irrep_dims)
]
def pad_eye(W_i):
d_i = W_i.shape[-1]
eyecm = complex(jnp.eye(d_i), jnp.zeros((d_i, d_i)))
return jnp.concatenate([jnp.expand_dims(eyecm, 0), W_i], 0)
def total_weight(W, irrep_dims, group_order):
W_list = []
for W_i, d_i in zip(W, irrep_dims):
Wcm = complex(W_i[..., 0], W_i[..., 1])
W_cm_ext = jnp.reshape(pad_eye(Wcm), (group_order, d_i * d_i))
W_list.append(W_cm_ext)
return jnp.concatenate(W_list, -1)
def forward(W, x):
res = []
for W_i in W:
Wcm = complex(W_i[..., 0], W_i[..., 1])
W_cm_ext = pad_eye(Wcm)
W_i_x = (jnp.expand_dims(W_cm_ext, 0) * jnp.expand_dims(jnp.expand_dims(x, -1), -1)).sum(1)
W_i_x_T = jnp.conjugate(jnp.transpose(W_i_x, axes=(0, -1, -2)))
res.append(W_i_x @ W_i_x_T)
return res
def loss(W, x, y):
res_x = forward(W, x)
res_y = forward(W, y)
res_loss = jnp.zeros(x.shape[0])
for (res_x_i, res_y_i) in zip(res_x, res_y):
res_loss += (jnp.abs(res_x_i - res_y_i)**2).mean(-1).mean(-1)
return res_loss / len(res_x)
def reg(W, irrep_dims, group_order):
d_tot = jnp.array(irrep_dims).sum()
eyecm = (d_tot) * complex(jnp.eye(group_order), jnp.zeros((group_order, group_order)))
W_tot = total_weight(W, irrep_dims, group_order)
W_tot_T = jnp.conjugate(jnp.transpose(W_tot, axes=(-1, -2)))
return (jnp.abs(eyecm - W_tot @ W_tot_T )**2).mean()
"""
Function recovering the Cayley table from the weights of the model
"""
def get_table(W, group_order):
res = jnp.zeros((group_order, group_order))
for g in range(group_order):
for h in range(group_order):
diffs = jnp.zeros(group_order)
for W_i in W:
Wcm = complex(W_i[..., 0], W_i[..., 1])
W_cm_ext = jnp.conjugate(jnp.transpose(pad_eye(Wcm), axes=(0, -1, -2)))
W_gh = W_cm_ext[g] @ W_cm_ext[h]
diffs += (jnp.abs(jnp.expand_dims(W_gh, 0) - W_cm_ext)**2).mean(-1).mean(-1)
res = res.at[g, h].set(jnp.argmin(diffs))
return res