-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdatasets.py
58 lines (45 loc) · 1.64 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import torch
from numpy import random
import os
from groups import *
import numpy as np
"""
Contrastive learning dataset for groups. A datapoint is a pair of (noisy) complex vectors in the same orbit.
"""
class group_dset(torch.utils.data.Dataset):
def __init__(self, group, std=1., noise=0.):
self.group = group
self.std = std
self.noise = noise
def __getitem__(self, index):
x_re = self.std * random.randn(self.group.order)
x_im = self.std * random.randn(self.group.order)
x = x_re + 1j * x_im
y = self.group.act(x)
perturb_re = self.noise * random.randn(self.group.order)
perturb_im = self.noise * random.randn(self.group.order)
x += perturb_re + 1j * perturb_im
return x, y
def __len__(self):
return 1000
"""
Contrastive learning dataset for class labels. A datapoint is a pair of (noisy) data with the same label.
"""
class label_dset(torch.utils.data.Dataset):
def __init__(self, root, noise=0.):
self.noise = noise
self.data = [np.load(os.path.join(root, P)) for P in os.listdir(root)]
def __getitem__(self, index):
label = random.randint(low=0, high=len(self.data))
num_data = len(self.data[label])
idx1 = random.randint(low=0, high=num_data)
idx2 = random.randint(low=0, high=num_data)
x_re = self.data[label][idx1]
y_re = self.data[label][idx2]
x = x_re + 1j * 0.
y = y_re + 1j * 0.
perturb_x = self.noise * random.randn(x_re.shape[0])
x += perturb_x + 1j * 0.
return x, y
def __len__(self):
return 1000