-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdeep_ocsort.py
582 lines (514 loc) · 20.7 KB
/
deep_ocsort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
"""
https://github.com/mikel-brostrom/yolo_tracking.git
This script is adopted from the SORT script by Alex Bewley alex@bewley.ai
Additional changes from https://github.com/mikel-brostrom/yolo_tracking:
- Removed unused functions
- Modified ReIDDetectMultiBackend to use YoutuReid (OpenCV Zoo)
- Use segmented person on black image instead of box crop for embeddings
- Included behavior analysis (emotion, gender, posture)
- KalmaxBoxTracker additional parameters:
- Added raw person embeddings for later multicamera association
- Emotion, gender, posture
- Third round of OCSORT association by comparing raw feature embedding
(might be useful for reappearance but yet to be fully investigated)
- needs hyperparameter tuning (reid_thresh)
"""
import sys
import cv2
import torch
import torchreid
import numpy as np
from association import *
from kalman_filter import KalmanFilterNew
from cmc import CameraMotionCompensation
def k_previous_obs(observations, cur_age, k):
if len(observations) == 0:
return [-1, -1, -1, -1, -1]
for i in range(k):
dt = k - i
if cur_age - dt in observations:
return observations[cur_age - dt]
max_age = max(observations.keys())
return observations[max_age]
def convert_bbox_to_z_new(bbox):
w = bbox[2] - bbox[0]
h = bbox[3] - bbox[1]
x = bbox[0] + w / 2.0
y = bbox[1] + h / 2.0
return np.array([x, y, w, h]).reshape((4, 1))
def convert_x_to_bbox_new(x):
x, y, w, h = x.reshape(-1)[:4]
return np.array([x - w / 2, y - h / 2, x + w / 2, y + h / 2]).reshape(1, 4)
def speed_direction(bbox1, bbox2):
cx1, cy1 = (bbox1[0] + bbox1[2]) / 2.0, (bbox1[1] + bbox1[3]) / 2.0
cx2, cy2 = (bbox2[0] + bbox2[2]) / 2.0, (bbox2[1] + bbox2[3]) / 2.0
speed = np.array([cy2 - cy1, cx2 - cx1])
norm = np.sqrt((cy2 - cy1) ** 2 + (cx2 - cx1) ** 2) + 1e-6
return speed / norm
def new_kf_process_noise(w, h, p=1 / 20, v=1 / 160):
Q = np.diag(
(
(p * w) ** 2,
(p * h) ** 2,
(p * w) ** 2,
(p * h) ** 2,
(v * w) ** 2,
(v * h) ** 2,
(v * w) ** 2,
(v * h) ** 2,
)
)
return Q
def new_kf_measurement_noise(w, h, m=1 / 20):
w_var = (m * w) ** 2
h_var = (m * h) ** 2
R = np.diag((w_var, h_var, w_var, h_var))
return R
class KalmanBoxTracker(object):
"""
This class represents the internal state of individual tracked objects observed as bbox.
"""
count = 0
def __init__(self, bbox, cls, behavior, delta_t=3, emb=None, alpha=0):
"""
Initialises a tracker using initial bounding box.
"""
# define constant velocity model
self.cls = cls
self.conf = bbox[-1]
self.kf = KalmanFilterNew(dim_x=8, dim_z=4)
self.kf.F = np.array(
[
# x y w h x' y' w' h'
[1, 0, 0, 0, 1, 0, 0, 0],
[0, 1, 0, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 0, 0, 1, 0],
[0, 0, 0, 1, 0, 0, 0, 1],
[0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 1],
]
)
self.kf.H = np.array(
[
[1, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0],
]
)
_, _, w, h = convert_bbox_to_z_new(bbox).reshape(-1)
self.kf.P = new_kf_process_noise(w, h)
self.kf.P[:4, :4] *= 4
self.kf.P[4:, 4:] *= 100
# Process and measurement uncertainty happen in functions
self.bbox_to_z_func = convert_bbox_to_z_new
self.x_to_bbox_func = convert_x_to_bbox_new
self.kf.x[:4] = self.bbox_to_z_func(bbox)
self.time_since_update = 0
self.id = KalmanBoxTracker.count
KalmanBoxTracker.count += 1
self.history = []
self.hits = 0
self.hit_streak = 0
self.age = 0
"""
NOTE: [-1,-1,-1,-1,-1] is a compromising placeholder for non-observation status, the same for the return of
function k_previous_obs. It is ugly and I do not like it. But to support generate observation array in a
fast and unified way, which you would see below k_observations = np.array([k_previous_obs(...]]), let's bear it for now.
"""
# Used for OCR
self.last_observation = np.array([-1, -1, -1, -1, -1]) # placeholder
# Used to output track after min_hits reached
self.history_observations = []
# Used for velocity
self.observations = dict()
self.velocity = None
self.delta_t = delta_t
self.emb = emb
self.emb_raw = emb
self.highest_conf = bbox[-1]
self.behavior = behavior
self.frozen = False
def update(self, bbox, cls):
"""
Updates the state vector with observed bbox.
"""
if bbox is not None:
self.frozen = False
self.cls = cls
self.conf = bbox[-1]
if self.last_observation.sum() >= 0: # no previous observation
previous_box = None
for dt in range(self.delta_t, 0, -1):
if self.age - dt in self.observations:
previous_box = self.observations[self.age - dt]
break
if previous_box is None:
previous_box = self.last_observation
"""
Estimate the track speed direction with observations \Delta t steps away
"""
self.velocity = speed_direction(previous_box, bbox)
"""
Insert new observations. This is a ugly way to maintain both self.observations
and self.history_observations. Bear it for the moment.
"""
self.last_observation = bbox
self.observations[self.age] = bbox
self.history_observations.append(bbox)
self.time_since_update = 0
self.history = []
self.hits += 1
self.hit_streak += 1
R = new_kf_measurement_noise(self.kf.x[2, 0], self.kf.x[3, 0])
self.kf.update(self.bbox_to_z_func(bbox), R=R)
else:
self.kf.update(bbox)
self.frozen = True
def update_emb(self, emb, alpha=0.9):
self.emb = alpha * self.emb + (1 - alpha) * emb
self.emb /= np.linalg.norm(self.emb)
def update_emb_raw(self, emb, score):
if score > self.highest_conf:
self.emb_raw = emb
self.highest_conf = score
def update_behavior(self, behavior):
self.behavior = behavior
def get_emb(self):
return self.emb.cpu()
def get_emb_raw(self):
return self.emb_raw.cpu()
def apply_affine_correction(self, affine):
m = affine[:, :2]
t = affine[:, 2].reshape(2, 1)
# For OCR
if self.last_observation.sum() > 0:
ps = self.last_observation[:4].reshape(2, 2).T
ps = m @ ps + t
self.last_observation[:4] = ps.T.reshape(-1)
# Apply to each box in the range of velocity computation
for dt in range(self.delta_t, -1, -1):
if self.age - dt in self.observations:
ps = self.observations[self.age - dt][:4].reshape(2, 2).T
ps = m @ ps + t
self.observations[self.age - dt][:4] = ps.T.reshape(-1)
# Also need to change kf state, but might be frozen
self.kf.apply_affine_correction(m, t, True)
def predict(self):
"""
Advances the state vector and returns the predicted bounding box estimate.
"""
# Don't allow negative bounding boxes
if self.kf.x[2] + self.kf.x[6] <= 0:
self.kf.x[6] = 0
if self.kf.x[3] + self.kf.x[7] <= 0:
self.kf.x[7] = 0
# Stop velocity, will update in kf during OOS
if self.frozen:
self.kf.x[6] = self.kf.x[7] = 0
Q = new_kf_process_noise(self.kf.x[2, 0], self.kf.x[3, 0])
self.kf.predict(Q=Q)
self.age += 1
if self.time_since_update > 0:
self.hit_streak = 0
self.time_since_update += 1
self.history.append(self.x_to_bbox_func(self.kf.x))
return self.history[-1]
def get_state(self):
"""
Returns the current bounding box estimate.
"""
return self.x_to_bbox_func(self.kf.x)
def get_behavior(self):
return self.behavior
def mahalanobis(self, bbox):
"""Should be run after a predict() call for accuracy."""
return self.kf.md_for_measurement(self.bbox_to_z_func(bbox))
"""
We support multiple ways for association cost calculation, by default
we use IoU. GIoU may have better performance in some situations. We note
that we hardly normalize the cost by all methods to (0,1) which may not be
the best practice.
"""
ASSO_FUNCS = {
"iou": iou_batch,
"giou": giou_batch,
"ciou": ciou_batch,
"diou": diou_batch,
"ct_dist": ct_dist,
}
class DeepOCSort(object):
def __init__(
self,
models,
det_thresh=0.3,
reid_thresh=0.5,
max_age=30,
min_hits=3,
iou_threshold=0.3,
delta_t=3,
asso_func="iou",
inertia=0.2,
w_association_emb=0.75,
alpha_fixed_emb=0.95,
aw_param=0.5,
embedding_off=False,
cmc_off=False,
aw_off=False,
**kwargs,
):
"""
Sets key parameters for SORT
"""
self.det_thresh = det_thresh
self.reid_thresh = reid_thresh
self.max_age = max_age
self.min_hits = min_hits
self.iou_threshold = iou_threshold
self.delta_t = delta_t
self.asso_func = ASSO_FUNCS[asso_func]
self.inertia = inertia
self.w_association_emb = w_association_emb
self.alpha_fixed_emb = alpha_fixed_emb
self.aw_param = aw_param
self.embedding_off = embedding_off
self.cmc_off = cmc_off
self.aw_off = aw_off
self.trackers = []
self.frame_count = 0
KalmanBoxTracker.count = 0
self.models = models
self.cmc = CameraMotionCompensation()
def update(self, dets, img, masks, tag="blub"):
"""
Params:
dets - a numpy array of detections in the format [[x1,y1,x2,y2,score],[x1,y1,x2,y2,score],...]
Requires: this method must be called once for each frame even with empty detections (use np.empty((0, 5)) for frames without detections).
Returns the a similar array, where the last column is the object ID.
NOTE: The number of objects returned may differ from the number of detections provided.
"""
assert isinstance(
dets, np.ndarray
), f"Unsupported 'dets' input format '{type(dets)}', valid format is np.ndarray"
assert isinstance(
img, np.ndarray
), f"Unsupported 'img' input format '{type(img)}', valid format is np.ndarray"
assert (
len(dets.shape) == 2
), f"Unsupported 'dets' dimensions, valid number of dimensions is two"
assert (
dets.shape[1] == 6
), f"Unsupported 'dets' 2nd dimension lenght, valid lenghts is 6"
raw_dets = dets[:, 0:6]
raw_scores = dets[:, 4]
remain_inds = raw_scores > self.det_thresh
dets = raw_dets[remain_inds]
masks = masks[remain_inds]
scores = raw_scores[remain_inds]
# Embedding
if self.embedding_off or dets.shape[0] == 0:
dets_embs = np.ones((dets.shape[0], 1))
else:
dets_embs, behaviors = self._get_features(dets[:, :4], img, masks)
# CMC
if not self.cmc_off:
transform = self.cmc.compute_affine(img, dets[:, :4], tag)
for trk in self.trackers:
trk.apply_affine_correction(transform)
trust = (dets[:, 4] - self.det_thresh) / (1 - self.det_thresh)
af = self.alpha_fixed_emb
# From [self.alpha_fixed_emb, 1], goes to 1 as detector is less confident
dets_alpha = af + (1 - af) * (1 - trust)
# get predicted locations from existing trackers.
trks = np.zeros((len(self.trackers), 5))
to_del, trk_embs, trk_embs_raw = [], [], []
for t, trk in enumerate(trks):
pos = self.trackers[t].predict()[0]
trk[:] = [pos[0], pos[1], pos[2], pos[3], 0]
if np.any(np.isnan(pos)):
to_del.append(t)
else:
trk_embs.append(self.trackers[t].get_emb())
trk_embs_raw.append(self.trackers[t].get_emb_raw())
trks = np.ma.compress_rows(np.ma.masked_invalid(trks))
if len(trk_embs) > 0:
trk_embs = np.vstack(trk_embs)
trk_embs_raw = np.vstack(trk_embs_raw)
else:
trk_embs = np.array(trk_embs)
trk_embs_raw = np.array(trk_embs_raw)
for t in reversed(to_del):
self.trackers.pop(t)
velocities = np.array(
[
trk.velocity if trk.velocity is not None else np.array((0, 0))
for trk in self.trackers
]
)
last_boxes = np.array([trk.last_observation for trk in self.trackers])
k_observations = np.array(
[
k_previous_obs(trk.observations, trk.age, self.delta_t)
for trk in self.trackers
]
)
"""
First round of association
"""
# (M detections X N tracks, final score)
if self.embedding_off or dets.shape[0] == 0 or trk_embs.shape[0] == 0:
stage1_emb_cost = None
else:
stage1_emb_cost = dets_embs @ trk_embs.T
matched, unmatched_dets, unmatched_trks = associate(
dets,
trks,
self.iou_threshold,
velocities,
k_observations,
self.inertia,
stage1_emb_cost,
self.w_association_emb,
self.aw_off,
self.aw_param,
)
for m in matched:
self.trackers[m[1]].update(dets[m[0], :5], dets[m[0], 5])
self.trackers[m[1]].update_emb(dets_embs[m[0]], alpha=dets_alpha[m[0]])
self.trackers[m[1]].update_emb_raw(dets_embs[m[0]], scores[m[0]])
self.trackers[m[1]].update_behavior(behaviors[m[0]])
"""
Second round of associaton by OCR
"""
if unmatched_dets.shape[0] > 0 and unmatched_trks.shape[0] > 0:
left_dets = dets[unmatched_dets]
left_dets_embs = dets_embs[unmatched_dets]
left_trks = last_boxes[unmatched_trks]
left_trks_embs = trk_embs[unmatched_trks]
iou_left = self.asso_func(left_dets, left_trks)
# TODO: is better without this
emb_cost_left = left_dets_embs @ left_trks_embs.T
if self.embedding_off:
emb_cost_left = np.zeros_like(emb_cost_left)
iou_left = np.array(iou_left)
if iou_left.max() > self.iou_threshold:
"""
NOTE: by using a lower threshold, e.g., self.iou_threshold - 0.1, you may
get a higher performance especially on MOT17/MOT20 datasets. But we keep it
uniform here for simplicity
"""
rematched_indices = linear_assignment(-iou_left)
to_remove_det_indices, to_remove_trk_indices = [], []
for m in rematched_indices:
det_ind, trk_ind = unmatched_dets[m[0]], unmatched_trks[m[1]]
if iou_left[m[0], m[1]] < self.iou_threshold:
continue
self.trackers[trk_ind].update(dets[det_ind, :5], dets[det_ind, 5])
self.trackers[trk_ind].update_emb(
dets_embs[det_ind], alpha=dets_alpha[det_ind]
)
self.trackers[trk_ind].update_emb_raw(
dets_embs[det_ind], scores[det_ind]
)
self.trackers[trk_ind].update_behavior(behaviors[det_ind])
to_remove_det_indices.append(det_ind)
to_remove_trk_indices.append(trk_ind)
unmatched_dets = np.setdiff1d(
unmatched_dets, np.array(to_remove_det_indices)
)
unmatched_trks = np.setdiff1d(
unmatched_trks, np.array(to_remove_trk_indices)
)
"""
Third round of association by comparing raw feature embedding
"""
if unmatched_dets.shape[0] > 0 and unmatched_trks.shape[0] > 0:
left_dets_embs = dets_embs[unmatched_dets]
left_trks_embs = trk_embs_raw[unmatched_trks]
distances = torchreid.metrics.compute_distance_matrix(
left_dets_embs, torch.Tensor(left_trks_embs), metric="cosine"
)
if distances.min() < self.reid_thresh:
rematched_indices = linear_assignment(distances.numpy())
to_remove_det_indices, to_remove_trk_indices = [], []
for m in rematched_indices:
det_ind, trk_ind = unmatched_dets[m[0]], unmatched_trks[m[1]]
if distances[m[0], m[1]] > self.reid_thresh:
continue
self.trackers[trk_ind].update(dets[det_ind, :5], dets[det_ind, 5])
self.trackers[trk_ind].update_emb(
dets_embs[det_ind], alpha=dets_alpha[det_ind]
)
self.trackers[trk_ind].update_emb_raw(
dets_embs[det_ind], scores[det_ind]
)
self.trackers[trk_ind].update_behavior(behaviors[det_ind])
to_remove_det_indices.append(det_ind)
to_remove_trk_indices.append(trk_ind)
unmatched_dets = np.setdiff1d(
unmatched_dets, np.array(to_remove_det_indices)
)
unmatched_trks = np.setdiff1d(
unmatched_trks, np.array(to_remove_trk_indices)
)
for m in unmatched_trks:
self.trackers[m].update(None, None)
# create and initialise new trackers for unmatched detections
for i in unmatched_dets:
trk = KalmanBoxTracker(
dets[i, :5],
dets[i, 5],
behaviors[i],
delta_t=self.delta_t,
emb=dets_embs[i],
alpha=dets_alpha[i],
)
self.trackers.append(trk)
i = len(self.trackers)
ret, emb_ret, behavior_ret = [], [], []
for trk in reversed(self.trackers):
if trk.last_observation.sum() < 0:
d = trk.get_state()[0]
else:
"""
this is optional to use the recent observation or the kalman filter prediction,
we didn't notice significant difference here
"""
d = trk.last_observation[:4]
if (trk.time_since_update < 1) and (
trk.hit_streak >= self.min_hits or self.frame_count <= self.min_hits
):
# +1 as MOT benchmark requires positive
emb_ret.append(trk.get_emb_raw().numpy())
behavior_ret.append(trk.get_behavior())
ret.append(
np.concatenate((d, [trk.id + 1], [trk.conf], [trk.cls])).reshape(
1, -1
)
)
i -= 1
# remove dead tracklet
if trk.time_since_update > self.max_age:
self.trackers.pop(i)
if len(ret) > 0:
return np.concatenate(ret), np.array(behavior_ret), np.array(emb_ret)
return np.empty((0, 5)), np.array([]), np.array([])
@torch.no_grad()
def _get_features(self, bbox_xyxy, ori_img, masks):
im_crops = []
behaviors = []
for i, box in enumerate(bbox_xyxy):
x1, y1, x2, y2 = box.astype(int)
im_seg = np.zeros_like(ori_img)
im_seg[masks[i]] = ori_img[masks[i]]
im_seg = im_seg[y1:y2, x1:x2]
im_crops.append(im_seg)
emotion, gender, posture = self.models.classify_emotion_gender_posture(
im_seg
)
behaviors.append([emotion, gender, posture])
if im_crops:
return self.models.reid_model(im_crops).cpu(), np.array(behaviors)
return np.array([]), np.array([])