-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapplication.py
44 lines (34 loc) · 1.43 KB
/
application.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from flask import Flask,request,jsonify,render_template
import pickle
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
application=Flask(__name__)
app=application
scaler=pickle.load(open("Models/standardScalar.pkl",'rb'))
model=pickle.load(open("Models/modelForPred.pkl",'rb'))
@app.route("/")
def index():
return render_template('home.html')
@app.route("/predictdata",methods=['GET','POST'])
def predict_datapoint():
if request.method=='POST':
Pregnancies=int(request.form.get("Pregnancies"))
Glucose=float(request.form.get('Glucose'))
BloodPressure=float(request.form.get('BloodPressure'))
SkinThickness=float(request.form.get('SkinThickness'))
Insulin=float(request.form.get('Insulin'))
BMI=float(request.form.get('BMI'))
DiabetesPedigreeFunction = float(request.form.get('DiabetesPedigreeFunction'))
Age=float(request.form.get('Age'))
new_data=scaler.transform([[Pregnancies,Glucose,BloodPressure,SkinThickness,Insulin,BMI,DiabetesPedigreeFunction,Age]])
predict=model.predict(new_data)
if predict[0]==1:
result="You may have diabetes, Kindly visit hospital."
else:
result="Chill..!! You dont have diabetes."
return render_template('home.html',results=result)
else:
return render_template('home.html')
if __name__=="__main__":
app.run(host="0.0.0.0")