-
Notifications
You must be signed in to change notification settings - Fork 146
/
Copy pathmain.py
142 lines (112 loc) · 4.51 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import torch
from torch.autograd import Variable
import os
from torch import nn
from torch.optim import lr_scheduler
from torch.nn.utils.rnn import pack_padded_sequence
from torch.utils.data import DataLoader
from torchvision import transforms
from model import East
from loss import *
from data_utils import custom_dset, collate_fn
import time
from tensorboardX import SummaryWriter
import config as cfg
from utils.init import *
from utils.util import *
from utils.save import *
from utils.myzip import *
import torch.backends.cudnn as cudnn
from eval import predict
from hmean import compute_hmean
import zipfile
import glob
import warnings
import numpy as np
def train(train_loader, model, criterion, scheduler, optimizer, epoch):
start = time.time()
losses = AverageMeter()
batch_time = AverageMeter()
data_time = AverageMeter()
end = time.time()
model.train()
for i, (img, score_map, geo_map, training_mask) in enumerate(train_loader):
data_time.update(time.time() - end)
if cfg.gpu is not None:
img, score_map, geo_map, training_mask = img.cuda(), score_map.cuda(), geo_map.cuda(), training_mask.cuda()
f_score, f_geometry = model(img)
loss1 = criterion(score_map, f_score, geo_map, f_geometry, training_mask)
losses.update(loss1.item(), img.size(0))
# backward
scheduler.step()
optimizer.zero_grad()
loss1.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % cfg.print_freq == 0:
print('EAST <==> TRAIN <==> Epoch: [{0}][{1}/{2}] Loss {loss.val:.4f} Avg Loss {loss.avg:.4f})\n'.format(epoch, i, len(train_loader), loss=losses))
save_loss_info(losses, epoch, i, train_loader)
def main():
hmean = .0
is_best = False
warnings.simplefilter('ignore', np.RankWarning)
# Prepare for dataset
print('EAST <==> Prepare <==> DataLoader <==> Begin')
train_root_path = os.path.abspath(os.path.join('./dataset/', 'train'))
train_img = os.path.join(train_root_path, 'img')
train_gt = os.path.join(train_root_path, 'gt')
trainset = custom_dset(train_img, train_gt)
train_loader = DataLoader(trainset, batch_size=cfg.train_batch_size_per_gpu*cfg.gpu,
shuffle=True, collate_fn=collate_fn, num_workers=cfg.num_workers)
print('EAST <==> Prepare <==> Batch_size:{} <==> Begin'.format(cfg.train_batch_size_per_gpu*cfg.gpu))
print('EAST <==> Prepare <==> DataLoader <==> Done')
# test datalodaer
"""
for i in range(100000):
for j, (a,b,c,d) in enumerate(train_loader):
print(i, j,'/',len(train_loader))
"""
# Model
print('EAST <==> Prepare <==> Network <==> Begin')
model = East()
model = nn.DataParallel(model, device_ids=cfg.gpu_ids)
model = model.cuda()
init_weights(model, init_type=cfg.init_type)
cudnn.benchmark = True
criterion = LossFunc()
optimizer = torch.optim.Adam(model.parameters(), lr=cfg.lr)
scheduler = lr_scheduler.StepLR(optimizer, step_size=10000, gamma=0.94)
# init or resume
if cfg.resume and os.path.isfile(cfg.checkpoint):
weightpath = os.path.abspath(cfg.checkpoint)
print("EAST <==> Prepare <==> Loading checkpoint '{}' <==> Begin".format(weightpath))
checkpoint = torch.load(weightpath)
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print("EAST <==> Prepare <==> Loading checkpoint '{}' <==> Done".format(weightpath))
else:
start_epoch = 0
print('EAST <==> Prepare <==> Network <==> Done')
for epoch in range(start_epoch, cfg.max_epochs):
train(train_loader, model, criterion, scheduler, optimizer, epoch)
if epoch % cfg.eval_iteration == 0:
# create res_file and img_with_box
output_txt_dir_path = predict(model, criterion, epoch)
# Zip file
submit_path = MyZip(output_txt_dir_path, epoch)
# submit and compute Hmean
hmean_ = compute_hmean(submit_path)
if hmean_ > hmean:
is_best = True
state = {
'epoch' : epoch,
'state_dict' : model.state_dict(),
'optimizer' : optimizer.state_dict(),
'is_best' : is_best,
}
save_checkpoint(state, epoch)
if __name__ == "__main__":
main()