-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalgo.jl
272 lines (215 loc) · 9.68 KB
/
algo.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# computes demographic transition (and updates intervivo transfers accordingly)
function compdemo()
global Nv, Nz, N, Nc, ivv, ivz
# compute demography transition
for tt in 2:tend
Nv[1,tt] = NB[tt]
for i in 2:nag
Nv[i,tt] = Nv[i-1,tt-1]*gamv[i-1,tt-1]
end
end
Nz = per2coh(Nv)
N = aggcoh2per(Nz)
Nc = sum(Nv[1:(fag-1),:],dims=1)
# Compute neutral intervivo-transfers by rescaling received transfers
for tt in 1:tend
ivgiven = -sum(Nv[:,tt].*ivv[:,tt].*(ivv[:,tt].<0))
ivreceived = sum(Nv[:,tt].*ivv[:,tt].*(ivv[:,tt].>0))
ivv[ivv[:,tt].>0,tt] = ivv[ivv[:,tt].>0,tt]*(ivgiven/ivreceived)
if abs(sum(ivv[:,tt].*Nv[:,tt]))>1e-10
println("ERROR IN RECOMPDEMO: Unbalanced intervivo transfers!")
end
end
ivz = per2coh(ivv)
end
# computes the further life expectancy
function lifeexpect(gamv)
local nag = length(gamv)
lifeexpectageN = zeroscol(nag)
for a in (nag-1):-1:1
lifeexpectageN[a] = (lifeexpectageN[a+1]+1)*gamv[a]+gamv[a+1]*(1-gamv[a])
end
return lifeexpectageN
end
# calibration routine
function calibfind(xcalib0)
global rho, taul0, ab0, abv0, taulv0, cGv0, yv0, lambdav0, Consv0, Av0, Savv0
global A0, P0, CG0, Exp0, tauW0, Rev0, PB0, edy0, edl0, eda0, edg0, ediv0, edab0
retvar = zeros(5)
rho = xcalib0[1]
cGscale = xcalib0[2]
taul0 = xcalib0[3]
ab0 = xcalib0[4]
lambdain = xcalib0[5]
abv0[fag:nag] = ab0/(N0-Nc0)*onescol(nag-fag+1) # children do not receive accidental bequest (workers start out with 0 assets)
taulv0[fag:nag] .= taul0
cGv0 = cGv0_profile.+cGscale
# INCOME
yv0 = notretv0.*(wv0.*(1.0.-tauWv0).*ellv0.*thetav0)+(1.0.-notretv0).*(1.0.-tauWv0).*pv0.-taulv0
# CONSUMPTION FOR ALL AGE GROUPS
# Euler equation
lambdav0[fag] = lambdain
for a in fag:(nag-1)
lambdav0[a+1] = lambdav0[a]/((1/(1+rho))*gamv0[a]*(1+rv0[a]))
end
Consv0[fag:nag] = (pcv0[fag:nag].*lambdav0[fag:nag]).^(-sigma)
# assets
Av0[fag] = 0
for a in (fag+1):nag
Av0[a] = (1+rv0[a-1])*(Av0[a-1]+yv0[a-1]+ivv0[a-1]+abv0[a-1]-pcv0[a-1]*Consv0[a-1])
end
Savv0 = Av0.+yv0.+ivv0.+abv0.-pcv0.*Consv0
# AGGREGATION
A0 = sum(Av0.*Nv0) # total assets
P0 = sum((1.0.-notretv0).*pv0.*Nv0) # expend pensions
CG0 = sum(cGv0.*Nv0) # government consumption
Exp0 = CG0+P0 # total primary expenditures
tauW0 = sum(tauWv0.*notretv0.*ellv0.*thetav0.*Nv0)/LS0 # average wage tax rate
Rev0 = TaxF0+(tauF0*LD0+tauW0*LS0)*w0+taul0*(Nw0+Nr0)+tauC0*Cons0+sum((1.0.-notretv0).*tauWv0.*pv0.*Nv0) # total revenues
PB0 = DG0*r0/(1+r0) # primary balance
# EXCESS DEMANDS
edy0 = Cons0+CG0+Inv0-Y0 # goods market
edl0 = LD0-LS0 # labor market
eda0 = DG0+V0-A0 # assets market
edg0 = Rev0-Exp0-PB0 # government budget
ediv0 = -iv0 # intervivo transfers resource constraint
edab0 = sum((1.0.-gamv0).*Savv0.*Nv0)-ab0 # accidental bequest resource constraint
retvar[1] = edy0
retvar[2] = edg0
retvar[3] = sum(Consv0.*Nv0)-Cons0
retvar[4] = edab0
retvar[5] = Savv0[nag]
return retvar
end
# main routine that solves the transition path of the full model
function solveOLG(starttime = 1, maxiter = 200, tol = 1e-4, damping_budget = 1.0, damping_assets = 1.0, damping_ab = 1.0, damping_r = 0.5, damping_new_assets = 0.7)
global uck, K, Inv, qTob, Y, w, wz, V, TaxF, Div
global Cons, LS, A, ab, iv, Nw, Nr, P, tauW, TaxP, Taxl, Rev, CG, Exp, PB
global edy, edg, edl, eda, ediv, edab, edw
global HH_nonconvz
global tauWv, tauWz, tauF, tauC, tauCv, tauCz, taul, taulv, taulz, tauprof, cGv, CG
global r, rz, rv, abv, abz, LD
global Av, Consv, lambdav, Savv, dis_totv, ellv, ev, wv, pcv, yv
println("\nRunning Tatonnement Algorithm for Transition:\n");
tic_loop = DateTime(now())
scaleA = 1.0; # initialize
scaleab = onesrow(tend); # initialize
#===== demography ======#
compdemo(); # recomputes demographic transition
for iter in 1:maxiter
tic_iter = DateTime(now())
#===== solve the firm problem for given labor demand ======#
uck[(starttime+1):tend] = (r[starttime:(tend-1)]+delta*(1.0.-tauprof[(starttime+1):tend]))./(1.0.-tauprof[(starttime+1):tend])
K[(starttime+1):tend] = MPKinv(uck[(starttime+1):tend],LD[(starttime+1):tend],TFP[(starttime+1):tend])
Inv[starttime:(tend-1)] = K[(starttime+1):tend] - (1-delta)*K[starttime:(tend-1)]
Inv[tend] = delta*K[tend]
qTob = (1.0.-tauprof).*MPK.(K,LD,TFP) .+ tauprof*delta .+ (1-delta)
Y = fY.(K,LD,TFP)
w = MPL.(K,LD,TFP)./(1.0.+tauF)
wv = kron(w,onescol(nag))
wz = per2coh(wv)
V = qTob.*K
TaxF = tauprof.*(Y.-(1.0.+tauF).*w.*LD.-delta*K)
Div = Y.-(1.0.+tauF).*w.*LD.-Inv.-TaxF
#===== solve the households' problem for given prices and tax rates ======#
HHall(starttime, (iter == 1), scaleA)
#===== aggregation ======#
Cons = aggcoh2per(Consz.*Nz)
LS = aggcoh2per(notretz.*ellz.*thetaz.*Nz)
A = aggcoh2per(Az.*Nz)
ab = aggcoh2per(abz.*Nz)
iv = aggcoh2per(ivz.*Nz) # should be 0 by construction
Nw = aggcoh2per(notretz.*Nz)
Nr = aggcoh2per((1.0.-notretz).*Nz)
# government budget
P = aggcoh2per((1.0.-notretz).*pz.*Nz)
tauW = aggcoh2per(tauWz.*notretz.*ellz.*thetaz.*Nz)./LS
TaxP = aggcoh2per((1.0.-notretz).*tauWz.*pz.*Nz)
Taxl = aggcoh2per(taulz.*Nz)
Rev = TaxF+(tauF.*LD+tauW.*LS).*w.+Taxl.+tauC.*Cons.+TaxP
CG = sum(cGv.*Nv,dims=1)
Exp = CG.+P
# follow given debt-path
PB[starttime:(tend-1)] = DG[starttime:(tend-1)].-DG[(starttime+1):tend]./(1.0.+r[starttime:(tend-1)])
PB[tend] = r[tend]*DG[tend]/(1+r[tend])
#===== excess demands ======#
edy = Inv.+Cons.+CG.-Y
edg = Rev.-Exp.-PB
edl = LD.-LS
eda = DG.+V.-A
ediv = -iv
edab = aggcoh2per((1.0.-gamz).*Savz.*Nz).-ab
edw = 1.0.*edy .+ w.*edl .+ ediv .+ edab .+ edg .+ eda - [eda[2:tend];eda[tend]]'./(1.0.+r) # Walras' Law
# check Walras' Law: this always has to hold (even out of equilibrium)! If not there is something wrong with accounting in the model
if maximum(abs.(edw[starttime:(tend-1)]))> 1e-10 error("Error: Walras Law does not hold!"); end
toc_iter = DateTime(now())
dur_iter = toc_iter - tic_iter
#===== checking error and breaking loop ======#
err = sum(abs.(edy[starttime:tend]))+sum(abs.(edg[starttime:tend]))+sum(abs.(edl[starttime:tend]))+sum(abs.(eda[starttime:tend]))+sum(abs.(ediv[starttime:tend]))+sum(abs.(edab[starttime:tend]));
err2 = log(err/tol);
println("Iteration: ", @sprintf("%3d",iter) ," scaleA: ", @sprintf("%.6f",scaleA), " scaleab: ", @sprintf("%.6f",mean(scaleab)), " non-conv.HH: ", @sprintf("%2d",sum(HH_nonconvz)), " Time: ", @sprintf("%5d",dur_iter.value), " ms log of err/tol: ", @sprintf("%2.8f",err2))
if (err2 < 0.0)
println(repeat(" ", 102), "Convergence!\n\n")
break
end
if (iter == maxiter)
println(repeat(" ", 102), "No Convergence!\n\n")
break
end
HH_nonconvz[:,:] .= 0 # reset convergence counter
#======= updating for next iteration =======#
# budget rules
budget_surplus = edg*damping_budget
if (budget_bal == 1)
tauWv = tauWv .- kron(budget_surplus./(w.*LS),onescol(nag))
tauWz = per2coh(tauWv)
end
if (budget_bal == 2)
tauF = tauF .- budget_surplus./(w.*LD)
end
if (budget_bal == 3)
tauC = tauC .- budget_surplus./Cons
tauCv = kron(tauC,onescol(nag))
tauCz = per2coh(tauCv)
end
if (budget_bal == 4)
taul = taul .- budget_surplus./(N.-Nc)
taulv[fag:nag,:] = kron(taul,onescol(nag-fag+1))
taulz = per2coh(taulv)
end
if (budget_bal == 5)
tauprof = tauprof - budget_surplus./(Y.-(1.0.+tauF).*w.*LD.-delta*K);
end
if (budget_bal == 6)
cGv = cGv .+ kron(budget_surplus./N,onescol(nag))
CG = sum(cGv.*Nv,dims=1)
end
# price updating
newassets = damping_new_assets*(A.-DG) .+ (1-damping_new_assets).*V
r_new = rdemand(newassets)
r = damping_r*r_new .+ (1-damping_r)*r
rv = kron(r,onescol(nag))
rz = per2coh(rv)
scaleab = 1.0.+(aggcoh2per((1.0.-gamz).*Savz.*Nz)./ab.-1.0)*damping_ab;
abv = abv.*kron(scaleab,onescol(nag))
abz = per2coh(abv)
LD = LS
scaleA = 1+((DG[starttime]+V[starttime])/A[starttime]-1)*damping_assets;
end
# convert cohort-view variables back to period-view variables
# (those where only cohort-view variables were altered in solveOLG)
Av = coh2per(Az)
Consv = coh2per(Consz)
lambdav = coh2per(lambdaz)
Savv = coh2per(Savz)
dis_totv = coh2per(dis_totz)
ellv = coh2per(ellz)
rv = coh2per(rz)
wv = coh2per(wz)
pcv = coh2per(pcz)
yv = coh2per(yz)
toc_loop = DateTime(now())
dur_loop = toc_loop-tic_loop
println("Computation time:\t", @sprintf("%.4f",dur_loop.value/1000), " sec")
println("CHECK SOLUTION:\t\t", @sprintf("%.16f",maximum(abs.(edy).+abs.(edl).+abs.(edg).+abs.(eda).+abs.(ediv).+abs.(edab))))
end