Skip to content

[IEIE 2024] 환자 메타데이터를 활용한 호흡 및 음성 소리의 대조 학습을 통한 SARS-CoV-2 양음성 및 중증도 진단

Notifications You must be signed in to change notification settings

sohds/covid19-diagnosis-using-cough-vowel

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Autumn Annual Conference of IEIE, 2024 (대한전자공학회 추계학술대회)

환자 메타데이터를 활용한 호흡 및 음성 소리의 대조 학습을 통한 SARS-CoV-2 양음성 및 중증도 진단

Diagnosis of SARS-CoV-2 Positivity and Severity Using Contrastive Learning on Respiratory and Voice Data with Patient Metadata

Seoyeon Oh1 , Dayoung Kim2 , and Yelin Kim 3†*
1Seoul Women's University  2Ewha Womans University  3Hongik University 
[Paper] [Code] [Notion]

당신의 목소리는 코로나를 알고 있다!
Contrastive Learning으로 호흡음과 음성 소리, 환자의 메타데이터를 활용해 COVID-19의 양음성 진단과 중증도 진단하기



Proposed Model Architecture


🔮 Abstract

  • This study aims to develop a COVID-19 (SARS-CoV-2) diagnosis model using a contrastive learning based on patients' respiratory and voice data.
  • Apply a contrastive learning techniques to respiratory and voice data by incorporating patient metadata
    • such as gender, symptoms, and respiratory disease history.
  • Not only predicts COVID-19 positivity/negativity but also assesses the severity of the disease.
  • Experimental results indicated that incorporating COVID-19-related metadata significantly enhanced diagnostic accuracy.
    • In particular, a history of respiratory disease proved to be a critical factor in predicting severity.

📝 Setting

# Clone the repository
git clone https://github.com/sohds/covid19-diagnosis-using-cough-vowel.git
cd covid19-diagnosis-using-cough-vowel

# Install the dependencies
# For Run Streamlit Code
pip install -r requirements.txt

# Streamlit Code
streamlit run streamlit/app_local.py

📁 Dataset


MFCC of vowel 'O'

📝 Results


🗞️ Poster


📚 References

[1] 보건복지부, "비대면진료 시범사업 지침 개정안," April 2024.
[2] Faustino, P, et al, "Crackle and Wheeze Detection in Lung Sound Signals Using Convolutional Neural Networks," Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 43rd, pp. 345–348. 2021.
[3] Tong, j. y, Sataloff, r. t, "Respiratory Function and Voice: The Role for Airflow Measures," Journal of Voice, Vol. 36, no. 4, pp. 542–553, 2022.
[4] 김철용, "[해외뉴스] 日 스마트폰으로 환자 호흡음 취득 의료기기," 한국의약통신, Link, April 2022.
[5] 장세민, "에이아이포펫, 국내 첫 AI 기반 수의사 비대면 진료 서비스 론칭," AI타임스, Link, March 2024.
[6] Aytekin. I, et al, "Covid-19 Detection from Respiratory Sounds with Hierarchical Spectrogram Transformers," IEEE Journal of Biomedical and Health Informatics, Vol. 28, no. 3, pp. 1273–1284, 2023.
[7] Despotovic v, et al, "Detection of COVID-19 from Voice, Cough and Breathing Patterns: Dataset and Preliminary Results," Computers in Biology and Medicine, 2021.
[8] 대한중환자의학회대한결핵 및 호흡기학회대한감염학회대한항균요법학회, "중증 코로나19 감염(COVID-19) 환자 진료 권고안", Vol. 1, 2021.
[9] Bhattacharya. d, et al. "Coswara: A Respiratory Sounds and Symptoms Dataset for Remote Screening of SARS-CoV-2 Infection. Computers in Biology and Medicine," 2023.


About

[IEIE 2024] 환자 메타데이터를 활용한 호흡 및 음성 소리의 대조 학습을 통한 SARS-CoV-2 양음성 및 중증도 진단

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%