forked from ntgiang71096/vfdetector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathissue_classifier.py
284 lines (223 loc) · 9.26 KB
/
issue_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
from transformers import RobertaTokenizer, RobertaConfig, RobertaModel, RobertaForSequenceClassification
import torch
from sklearn.model_selection import KFold, StratifiedKFold
from torch import nn as nn
import os
from torch.utils.data import Dataset, DataLoader
from torch.nn import functional as F
from torch import cuda
from torch import optim as optim
from sklearn import metrics
import numpy as np
import random
import math
import csv
from transformers import AdamW
from transformers import get_scheduler
import pandas as pd
from sklearn.model_selection import train_test_split
from tqdm import tqdm
import data_loader
from data_preprocessor import preprocess_single_record
from feature_options import ExperimentOption
from message_classifier import get_roberta_features, TextDataset, predict_test_data
import argparse
import config
from variant_8_finetune_separate import get_data
import json
directory = os.path.dirname(os.path.abspath(__file__))
github_issue_folder_path = os.path.join(directory, 'github_issues')
# dataset_name = os.path.join(directory, 'sub_enhanced_dataset_th_100.txt')
# MODEL_PATH = os.path.join(directory, 'model/issue_classifier.sav')
dataset_name = None
MODEL_PATH = None
# re-test with sap dataset epoch = 10
NUMBER_OF_EPOCHS = 20
learning_rate = 1e-5
use_cuda = cuda.is_available()
device = torch.device("cuda:0" if use_cuda else "cpu")
random_seed = 109
torch.manual_seed(random_seed)
torch.cuda.manual_seed(random_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
params = {'batch_size': 16,
'shuffle': True,
'num_workers': 8}
test_params = {'batch_size': 64,
'shuffle': False,
'num_workers': 8}
false_cases = []
def read_sap_issue(dataset_name='sub_enhanced_dataset_th_100.txt', need_urls=False):
issues, labels, urls = [], [], []
url_to_issue = {}
records = data_loader.load_records('sub_enhanced_dataset_th_100.txt')
options = ExperimentOption()
print("Preprocessing records...")
records = [preprocess_single_record(record, options) for record in tqdm(records)]
for record in records:
url = record.repo + '/commit/' + record.commit_id
url = url[len('https://github.com/') :]
url_to_issue[url] = record.issue_info
original_records = data_loader.load_records('full_dataset_with_all_features.txt')
for record in original_records:
url = record.repo + '/commit/' + record.commit_id
url = url[len('https://github.com/') :]
urls.append(url)
labels.append(record.label)
if url in url_to_issue:
issues.append(url_to_issue[url])
else:
issues.append(' ')
print("Finish preprocessing")
if need_urls:
return issues, labels, urls
else:
return issues, labels
def read_issue():
print("Reading Tensor Flow issues...")
df = pd.read_csv('tf_issue_linking.csv')
number_to_url = {}
for item in df.values.tolist():
number = item[1]
url = item[0]
if number not in number_to_url:
number_to_url[number] = []
number_to_url[number].append(url)
url_to_issue = {}
for file_name in os.listdir(github_issue_folder_path):
if file_name.endswith('.json'):
with open(github_issue_folder_path + '/' + file_name) as file:
json_raw = file.read()
issues = json.loads(json_raw)
for issue in issues:
number = issue['number']
if number in number_to_url:
if issue['title'] is not None:
title = issue['title']
else:
title = ''
if issue['body'] is not None:
body = issue['body']
else:
body = ''
for url in number_to_url[number]:
url_to_issue[url] = title + '\n' + body
print("Finish reading")
return url_to_issue
def read_tensor_flow_issue(dataset_name, need_url_data=False):
patch_data, label_data, url_data = get_data(dataset_name)
url_to_issue = read_issue()
print(len(url_to_issue))
text_train, text_test, label_train, label_test, url_train, url_test = [], [], [], [], [], []
for i, url in enumerate(url_data['train']):
text_train.append(url_to_issue[url])
label_train.append(label_data['train'][i])
url_train.append(url)
for i, url in enumerate(url_data['test']):
text_test.append(url_to_issue[url])
label_test.append(label_data['test'][i])
url_test.append(url)
if not need_url_data:
return text_train, text_test, label_train, label_test
else:
return text_train, text_test, label_train, label_test, url_train, url_test
def do_train(args):
global dataset_name, MODEL_PATH
dataset_name = args.dataset_path
MODEL_PATH = args.model_path
print("Dataset name: {}".format(dataset_name))
print("Saving model to: {}".format(MODEL_PATH))
if dataset_name == config.SAP_DATASET_NAME:
texts, labels = read_sap_issue(dataset_name)
text_train, text_test, label_train, label_test = train_test_split(texts, labels, test_size=0.20, random_state=109)
else:
text_train, text_test, label_train, label_test = read_tensor_flow_issue(dataset_name)
tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
print("Converting using pretrained...")
train_features = get_roberta_features(tokenizer, text_train, length=256)
test_features = get_roberta_features(tokenizer, text_test, length=256)
print("Finish preparing!")
train_partition = []
test_partition = []
partition = {}
labels = {}
id2input = {}
id2mask = {}
for i in range(len(train_features)):
id = i
input_id = train_features[i][0]
attention_mask = train_features[i][1]
label = label_train[i]
train_partition.append(id)
labels[id] = label
id2input[id] = input_id
id2mask[id] = attention_mask
partition['train'] = train_partition
for i in range(len(test_features)):
id = len(train_features) + i # next index
input_id = test_features[i][0]
attention_mask = test_features[i][1]
label = label_test[i]
test_partition.append(id)
labels[id] = label
id2input[id] = input_id
id2mask[id] = attention_mask
partition['test'] = test_partition
training_set = TextDataset(partition['train'], labels, id2input, id2mask)
training_generator = torch.utils.data.DataLoader(training_set, **params)
testing_set = TextDataset(partition['test'], labels, id2input, id2mask)
testing_generator = torch.utils.data.DataLoader(testing_set, **params)
model = RobertaForSequenceClassification.from_pretrained('roberta-base', num_labels=2)
optimizer = AdamW(model.parameters(), lr=learning_rate)
num_training_steps = NUMBER_OF_EPOCHS * len(training_generator)
lr_scheduler = get_scheduler(
"linear",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=num_training_steps
)
# if torch.cuda.device_count() > 1:
# print("Let's use", torch.cuda.device_count(), "GPUs!")
# # dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
# model = nn.DataParallel(model)
model.to(device)
model.train()
for epoch in range(NUMBER_OF_EPOCHS):
total_loss = 0
current_batch = 0
for id_batch, input_id_batch, mask_batch, label_batch in training_generator:
# print("epoch {} current_batch {}".format(epoch, current_batch))
current_batch += 1
input_id_batch, mask_batch, label_batch \
= input_id_batch.to(device), mask_batch.to(device), label_batch.to(device)
outs = model(input_ids=input_id_batch, attention_mask=mask_batch, labels=label_batch)
loss = outs.loss
# logits = outs.logits
# loss = loss_function(F.softmax(logits, dim=1), label_batch)
loss.backward()
optimizer.step()
lr_scheduler.step()
model.zero_grad()
total_loss += loss.detach().item()
print("epoch {}, learning rate {}, total loss {}".format(epoch, lr_scheduler.get_last_lr(), total_loss))
precision, recall, f1 = predict_test_data(model=model,
testing_generator=testing_generator,
device=device)
print("Precision: {}".format(precision))
print("Recall: {}".format(recall))
print("F1: {}".format(f1))
# print("AUC Java: {}".format(auc))
torch.save(model.state_dict(), MODEL_PATH)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='')
parser.add_argument('--dataset_path',
type=str,
required=True,
help='name of dataset')
parser.add_argument('--model_path',
type=str,
required=True,
help='select path to save model')
args = parser.parse_args()
do_train(args)