-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
170 lines (139 loc) · 5.27 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import argparse
import datetime
from functools import partial
import json
import os
import random
import sys
import yaml
import numpy as np
import torch as th
from crafter.env import Env
from stable_baselines3.common.vec_env.subproc_vec_env import SubprocVecEnv
from stable_baselines3.common.vec_env.vec_monitor import VecMonitor
from achievement_distillation.algorithm import *
from achievement_distillation.constant import TASKS
from achievement_distillation.logger import Logger
from achievement_distillation.model import *
from achievement_distillation.sample import sample_rollouts
from achievement_distillation.storage import RolloutStorage
from achievement_distillation.wrapper import VecPyTorch
def main(args):
# Load config file
config_file = open(f"configs/{args.exp_name}.yaml", "r")
config = yaml.load(config_file, Loader=yaml.FullLoader)
# Fix random seed
random.seed(args.seed)
np.random.seed(args.seed)
th.manual_seed(args.seed)
th.cuda.manual_seed_all(args.seed)
th.backends.cudnn.benchmark = False
# CUDA setting
th.set_num_threads(1)
cuda = th.cuda.is_available()
device = th.device("cuda:0" if cuda else "cpu")
# Create logger
group_name = f"{args.exp_name}-{args.timestamp}"
run_name = f"{group_name}-s{args.seed:02}"
if args.log_stats:
# JSON
log_dir = os.path.join("./logs", run_name)
os.makedirs(log_dir, exist_ok=True)
log_path = os.path.join(log_dir, "stats.jsonl")
log_file = open(log_path, "w")
# W&B
logger = Logger(config=config, group=group_name, name=run_name)
# Create checkpoint directory
if args.save_ckpt:
ckpt_dir = os.path.join("./models", run_name)
os.makedirs(ckpt_dir, exist_ok=True)
# Create environment
seeds = np.random.randint(0, 2**31 - 1, size=config["nproc"])
env_fns = [partial(Env, seed=seed) for seed in seeds]
venv = SubprocVecEnv(env_fns)
venv = VecMonitor(venv)
venv = VecPyTorch(venv, device=device)
obs = venv.reset()
# Create storage
storage = RolloutStorage(
nstep=config["nstep"],
nproc=config["nproc"],
observation_space=venv.observation_space,
action_space=venv.action_space,
hidsize=config["model_kwargs"]["hidsize"],
device=device,
)
storage.obs[0].copy_(obs)
# Create model
model_cls = getattr(sys.modules[__name__], config["model_cls"])
model: BaseModel = model_cls(
observation_space=venv.observation_space,
action_space=venv.action_space,
**config["model_kwargs"],
)
model = model.to(device)
print(model)
# Create algorithm
algorithm_cls = getattr(sys.modules[__name__], config["algorithm_cls"])
algorithm: BaseAlgorithm = algorithm_cls(
model=model,
**config["algorithm_kwargs"],
)
# Run algorithm
total_successes = np.zeros((0, len(TASKS)), dtype=np.int32)
for epoch in range(1, config["nepoch"] + 1):
# Sample episodes
rollout_stats = sample_rollouts(venv, model, storage)
# Compute returns
storage.compute_returns(config["gamma"], config["gae_lambda"])
# Update models
train_stats = algorithm.update(storage)
# Reset storage
storage.reset()
# Compute score
successes = rollout_stats["successes"]
total_successes = np.concatenate([total_successes, successes], axis=0)
success_rate = 100 * np.mean(total_successes, axis=0)
score = np.exp(np.mean(np.log(1 + success_rate))) - 1
# Get eval stats
eval_stats = {
"success_rate": {k: v for k, v in zip(TASKS, success_rate)},
"score": score,
}
# Print stats
print(f"\nepoch {epoch}:")
print(json.dumps(train_stats, indent=2))
print(json.dumps(eval_stats, indent=2))
# Log stats
if args.log_stats:
# JSON
episode_lengths = rollout_stats["episode_lengths"]
episode_rewards = rollout_stats["episode_rewards"]
achievements = rollout_stats["achievements"]
for i in range(len(episode_lengths)):
rollout_stat = {
"length": int(episode_lengths[i]),
"reward": round(float(episode_rewards[i]), 1),
}
for j, task in enumerate(TASKS):
rollout_stat[f"achievement_{task}"] = int(achievements[i, j])
log_file.write(json.dumps(rollout_stat) + "\n")
log_file.flush()
# W&B
logger.log(train_stats, epoch)
logger.log(eval_stats, epoch)
# Save checkpoint
if args.save_ckpt and epoch % config["save_freq"] == 0:
ckpt_path = os.path.join(ckpt_dir, f"agent-e{epoch:03}.pt")
th.save(model.state_dict(), ckpt_path)
if __name__ == "__main__":
# Parse arguments
parser = argparse.ArgumentParser()
parser.add_argument("--exp_name", type=str, required=True)
parser.add_argument("--timestamp", type=str, default="debug")
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--log_stats", action="store_true")
parser.add_argument("--save_ckpt", action="store_true")
args = parser.parse_args()
# Run main
main(args)