-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmulti_train_adapt.py
executable file
·571 lines (502 loc) · 28.4 KB
/
multi_train_adapt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
'''
The default exp_name is tmp. Change it before formal training! isic2018 PH2 DMF SKD
nohup python -u multi_train_adapt.py --exp_name test --config_yml Configs/multi_train_local.yml --model MedFormer --batch_size 16 --adapt_method False --num_domains 1 --dataset PH2 --k_fold 4 > 4MedFormer_PH2.out 2>&1 &
'''
import argparse
from sqlite3 import adapt
import yaml
import os, time
from datetime import datetime
import pandas as pd
import torch.nn as nn
import torch.utils.data
import torch.optim as optim
import medpy.metric.binary as metrics
from torch.utils.tensorboard import SummaryWriter
from Datasets.create_dataset import Dataset_wrap_csv
from Utils.losses import dice_loss
from Utils.pieces import DotDict
torch.cuda.empty_cache()
def main(config):
# set gpu
device_ids = range(torch.cuda.device_count())
# prepare train, val, test datas
train_loaders = {} # initialize data loaders
val_loaders = {}
test_loaders = {}
for dataset_name in config.data.name:
datas = Dataset_wrap_csv(k_fold=config.data.k_fold, use_old_split=True, img_size=config.data.img_size,
dataset_name = dataset_name, split_ratio=config.data.split_ratio,
train_aug=config.data.train_aug, data_folder=config.data.data_folder)
train_data, val_data, test_data = datas['train'], datas['test'], datas['test']
train_loader = torch.utils.data.DataLoader(train_data,
batch_size=config.train.batch_size,
shuffle=True,
num_workers=config.train.num_workers,
pin_memory=True,
drop_last=True)
val_loader = torch.utils.data.DataLoader(val_data,
batch_size=config.test.batch_size,
shuffle=False,
num_workers=config.test.num_workers,
pin_memory=True,
drop_last=False)
test_loader = torch.utils.data.DataLoader(test_data,
batch_size=config.test.batch_size,
shuffle=False,
num_workers=config.test.num_workers,
pin_memory=True,
drop_last=False)
train_loaders[dataset_name] = train_loader
val_loaders[dataset_name] = val_loader
test_loaders[dataset_name] = test_loader
print('{} has {} training samples'.format(dataset_name, len(train_loader.dataset)))
print('{} k_folder, {} val'.format(config.data.k_fold, config.data.use_val))
# prepare model
if config.model == 'SwinSeg':
from Models.Transformer.Swin_adapters import SwinSimpleSeg_adapt
model = SwinSimpleSeg_adapt(img_size=config.data.img_size,pretrained=True,pretrained_swin_name=config.swin.name,
pretrained_folder=config.pretrained_folder,
embed_dim=config.swin.EMBED_DIM,drop_path_rate=config.swin.DROP_PATH_RATE,
depths=config.swin.DEPTHS,num_heads=config.swin.NUM_HEADS,window_size=config.swin.WINDOW_SIZE,
debug=config.debug, adapt_method=False, num_domains=K)
# freeze some parameters
# for name, param in model.encoder.named_parameters():
# param.requires_grad = False
elif config.model == 'SwinSeg_adapt':
from Models.Transformer.Swin_adapters import SwinSimpleSeg_adapt
model = SwinSimpleSeg_adapt(img_size=config.data.img_size,pretrained=True,pretrained_swin_name=config.swin.name,
pretrained_folder=config.pretrained_folder,
embed_dim=config.swin.EMBED_DIM,drop_path_rate=config.swin.DROP_PATH_RATE,
depths=config.swin.DEPTHS,num_heads=config.swin.NUM_HEADS,window_size=config.swin.WINDOW_SIZE,
debug=config.debug, adapt_method=config.model_adapt.adapt_method, num_domains=K)
# freeze some parameters
for name, param in model.encoder.named_parameters():
if 'adapter' not in name and 'norm' not in name:
param.requires_grad = False
elif config.model == 'SwinSeg_CNNprompt_adapt':
from Models.Transformer.Swin_adapters import SwinSimpleSeg_CNNprompt_adapt
model = SwinSimpleSeg_CNNprompt_adapt(img_size=config.data.img_size,pretrained=True,pretrained_swin_name=config.swin.name,
pretrained_folder=config.pretrained_folder,
embed_dim=config.swin.EMBED_DIM,drop_path_rate=config.swin.DROP_PATH_RATE,
depths=config.swin.DEPTHS,num_heads=config.swin.NUM_HEADS,window_size=config.swin.WINDOW_SIZE,
debug=config.debug, adapt_method=config.model_adapt.adapt_method, num_domains=K)
# freeze some parameters
for name, param in model.encoder.named_parameters():
if 'adapter' not in name and 'norm' not in name:
param.requires_grad = False
elif config.model == 'ViTSeg':
from Models.Transformer.ViT_adapters import ViTSeg_adapt
model = ViTSeg_adapt(pretrained=True, pretrained_vit_name=config.vit.name,
pretrained_folder=config.pretrained_folder,img_size=config.data.img_size, patch_size=config.vit.patch_size,
embed_dim=config.vit.embed_dim, depth=config.vit.depth, num_heads=config.vit.num_heads,
mlp_ratio=config.vit.mlp_ratio, drop_rate=config.vit.dropout_rate,
attn_drop_rate=config.vit.attention_dropout_rate, drop_path_rate=0.2,
debug=config.debug, adapt_method=False, num_domains=K)
# for name, param in model.encoder.named_parameters():
# param.requires_grad = False
elif config.model == 'ViTSeg_adapt':
from Models.Transformer.ViT_adapters import ViTSeg_adapt
model = ViTSeg_adapt(pretrained=True, pretrained_vit_name=config.vit.name,
pretrained_folder=config.pretrained_folder,img_size=config.data.img_size, patch_size=config.vit.patch_size,
embed_dim=config.vit.embed_dim, depth=config.vit.depth, num_heads=config.vit.num_heads,
mlp_ratio=config.vit.mlp_ratio, drop_rate=config.vit.dropout_rate,
attn_drop_rate=config.vit.attention_dropout_rate, drop_path_rate=0.2,
debug=config.debug, adapt_method=config.model_adapt.adapt_method, num_domains=K)
for name, param in model.encoder.named_parameters():
if 'adapter' not in name and 'norm' not in name:
param.requires_grad = False
elif config.model == 'ViTSeg_CNNprompt_adapt':
from Models.Transformer.ViT_adapters import ViTSeg_CNNprompt_adapt
model = ViTSeg_CNNprompt_adapt(pretrained=True, pretrained_vit_name=config.vit.name,
pretrained_folder=config.pretrained_folder,img_size=config.data.img_size, patch_size=config.vit.patch_size,
embed_dim=config.vit.embed_dim, depth=config.vit.depth, num_heads=config.vit.num_heads,
mlp_ratio=config.vit.mlp_ratio, drop_rate=config.vit.dropout_rate,
attn_drop_rate=config.vit.attention_dropout_rate, drop_path_rate=0.2,
debug=config.debug, adapt_method=config.model_adapt.adapt_method, num_domains=K)
for name, param in model.encoder.named_parameters():
if 'adapter' not in name and 'norm' not in name:
param.requires_grad = False
elif config.model =='AdaptFormer':
from Models.Transformer.AdapterFormer import AdaptFormer
model = AdaptFormer(pretrained=True, pretrained_vit_name=config.vit.name,
pretrained_folder=config.pretrained_folder,img_size=config.data.img_size, patch_size=config.vit.patch_size,
embed_dim=config.vit.embed_dim, depth=config.vit.depth, num_heads=config.vit.num_heads,
mlp_ratio=config.vit.mlp_ratio, drop_rate=config.vit.dropout_rate,
attn_drop_rate=config.vit.attention_dropout_rate, drop_path_rate=0.2,
debug=config.debug, adapt_method=config.model_adapt.adapt_method, num_domains=K)
for name, param in model.encoder.named_parameters():
if 'adapter' not in name:
param.requires_grad = False
elif config.model == 'DeiTSeg':
from Models.Transformer.ViT_adapters import ViTSeg_adapt
model = ViTSeg_adapt(pretrained=True, pretrained_vit_name=config.deit.name,
pretrained_folder=config.pretrained_folder,img_size=config.data.img_size, patch_size=config.deit.patch_size,
embed_dim=config.deit.embed_dim, depth=config.deit.depth, num_heads=config.deit.num_heads,
mlp_ratio=config.deit.mlp_ratio, drop_rate=config.deit.dropout_rate,
attn_drop_rate=config.deit.attention_dropout_rate, drop_path_rate=0.2,
debug=config.debug, adapt_method=False, num_domains=K)
# for name, param in model.encoder.named_parameters():
# param.requires_grad = False
elif config.model == 'DeiTSeg_CNNprompt_adapt':
from Models.Transformer.ViT_adapters import ViTSeg_CNNprompt_adapt4
model = ViTSeg_CNNprompt_adapt4(pretrained=True, pretrained_vit_name=config.deit.name,
pretrained_folder=config.pretrained_folder,img_size=config.data.img_size, patch_size=config.deit.patch_size,
embed_dim=config.deit.embed_dim, depth=config.deit.depth, num_heads=config.deit.num_heads,
mlp_ratio=config.deit.mlp_ratio, drop_rate=config.deit.dropout_rate,
attn_drop_rate=config.deit.attention_dropout_rate, drop_path_rate=0.2,
debug=config.debug, adapt_method=config.model_adapt.adapt_method, num_domains=K)
for name, param in model.encoder.named_parameters():
if 'adapter' not in name and 'norm' not in name:
param.requires_grad = False
elif config.model == 'VPT':
from Models.Transformer.ViT_prompt import ViTSeg_prompt
model = ViTSeg_prompt(pretrained=True, pretrained_vit_name=config.vit.name,
pretrained_folder=config.pretrained_folder,img_size=config.data.img_size, patch_size=config.vit.patch_size,
embed_dim=config.vit.embed_dim, depth=config.vit.depth, num_heads=config.vit.num_heads,
mlp_ratio=config.vit.mlp_ratio, drop_rate=config.vit.dropout_rate,
attn_drop_rate=config.vit.attention_dropout_rate, drop_path_rate=0.2,
debug=config.debug, adapt_method=False, num_domains=K,prompt_len=100,prompt_drop_rate=0.1)
for name, param in model.encoder.named_parameters():
if 'prompt' not in name:
param.requires_grad = False
elif config.model == 'TransFuse':
from Models.Hybrid_models.TransFuseFolder.TransFuse import TransFuse_L
model = TransFuse_L(pretrained=True, pretrained_folder=config.pretrained_folder)
elif config.model == 'FAT-Net':
from Models.Hybrid_models.FAT_Net import FAT_Net
model = FAT_Net()
elif config.model == 'SwinUNETR':
from monai.networks.nets import SwinUNETR
model = SwinUNETR(img_size=(224,224), in_channels=3, out_channels=1, feature_size=48, use_checkpoint=False, spatial_dims=2)
elif config.model == 'UNETR':
from monai.networks.nets import UNETR
model = UNETR(img_size=224, in_channels=3, out_channels=1, spatial_dims=2)
elif config.model == 'H2Former':
from Models.Hybrid_models.H2FormerFolder.H2Former import res34_swin_MS
model = res34_swin_MS(image_size=224,num_class=1,pretrained=True,pretrained_folder=config.pretrained_folder)
elif config.model == 'UTNet':
from Models.Hybrid_models.UTNetFolder.UTNet import UTNet
model = UTNet(in_chan=3,base_chan=32,num_classes=1,reduce_size=config.data.img_size//32,block_list='1234',num_blocks=[1,1,1,1],
num_heads=[4,4,4,4], projection='interp', attn_drop=0.1, proj_drop=0.1, rel_pos=True, aux_loss=False, maxpool=True)
elif config.model == 'MedFormer':
from Models.Hybrid_models.MedFormerFolder.MedFormer import MedFormer
model = MedFormer(in_chan=3, num_classes=1, base_chan=32, conv_block='BasicBlock', conv_num=[2,0,0,0, 0,0,2,2], trans_num=[0,2,2,2, 2,2,0,0],
num_heads=[1,4,8,16, 8,4,1,1], fusion_depth=2, fusion_dim=512, fusion_heads=16, map_size=3,
proj_type='depthwise', act=nn.GELU, expansion=2, attn_drop=0., proj_drop=0.)
elif config.model == 'SwinUnet':
from Models.Transformer.SwinUnet import SwinUnet
model = SwinUnet(img_size=config.data.img_size)
total_trainable_params = sum(
p.numel() for p in model.parameters() if p.requires_grad)
total_params = sum(p.numel() for p in model.parameters())
print('{}M total parameters'.format(total_params/1e6))
print('{}M total trainable parameters'.format(total_trainable_params/1e6))
# from thop import profile
# input = torch.randn(1,3,224,224)
# flops, params = profile(model, (input,))
# print(f"total flops : {flops/1e9} G")
# test model
# x = torch.randn(5,3,224,224)
# y = model(x)
# print(y.shape)
model = model.cuda()
## If multiple GPUs
if len(device_ids) > 1:
model = torch.nn.DataParallel(model).cuda()
criterion = [nn.BCELoss(), dice_loss]
# only test
if config.test.only_test == True:
test(config, model, config.test.test_model_dir, test_loaders, criterion)
else:
train_val(config, model, train_loaders, val_loaders, criterion)
test(config, model, best_model_dir, test_loaders, criterion)
# =======================================================================================================
def train_val(config, model, train_loaders, val_loaders, criterion):
# optimizer loss
if config.train.optimizer.mode == 'adam':
# optimizer = optim.Adam(model.parameters(), lr=float(config.train.optimizer.adam.lr))
print('choose wrong optimizer')
elif config.train.optimizer.mode == 'adamw':
optimizer = optim.AdamW(filter(lambda p: p.requires_grad, model.parameters()),lr=float(config.train.optimizer.adamw.lr),
weight_decay=float(config.train.optimizer.adamw.weight_decay))
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=50, gamma=0.5)
# ---------------------------------------------------------------------------
# Training and Validating
#----------------------------------------------------------------------------
epochs = config.train.num_epochs
max_iou = 0 # use for record best model
best_epoch = 0 # use for recording the best epoch
# create training data loading iteration
train_iters = {}
for dataset_name in train_loaders.keys():
train_iters[dataset_name] = iter(train_loaders[dataset_name])
if config.train.num_iters:
iterations = config.train.num_iters
else:
iterations = max([len(train_loaders[x]) for x in train_iters.keys()])
torch.save(model.state_dict(), best_model_dir)
for epoch in range(epochs):
start = time.time()
# ----------------------------------------------------------------------
# train
# ---------------------------------------------------------------------
model.train()
for train_step in range(epoch*iterations, (epoch+1)*iterations):
# for each dataset, get one minibatch, get loss, sum all losses together
# update once
datas_loss_list = [] #record loss for datasets
dice_train_list = []
iou_train_list = []
for dataset_name in config.data.name:
try:
batch = next(train_iters[dataset_name])
except StopIteration:
train_iters[dataset_name] = iter(train_loaders[dataset_name])
batch = next(train_iters[dataset_name])
img = batch['image'].cuda().float()
label = batch['label'].cuda().float()
# domain_label = batch['set_id']
if K == 1:
d = '0'
else:
d = str(data2domain[dataset_name])
# domain_label = torch.nn.functional.one_hot(domain_label, 4).float().cuda()
other_models = set(['SwinUNETR','UNETR','SwinUnet','MedFormer','UTNet'])
if config.model in other_models:
output = model(img)
else:
output = model(img,d=d)['seg']
output = torch.sigmoid(output)
# calculate loss
assert (output.shape == label.shape)
losses = []
for function in criterion:
losses.append(function(output, label))
loss = sum(losses)
datas_loss_list.append(loss)
# calculate metrics
with torch.no_grad():
output = output.cpu().numpy() > 0.5
label = label.cpu().numpy()
assert (output.shape == label.shape)
dice_train = metrics.dc(output, label)
iou_train = metrics.jc(output, label)
dice_train_list.append(dice_train)
iou_train_list.append(iou_train)
# logging per batch
# writer.add_scalar('Train/{}/BCEloss'.format(dataset_name), losses[0].item(), train_step)
# writer.add_scalar('Train/{}/Diceloss'.format(dataset_name), losses[1].item(), train_step)
writer.add_scalar('Train/{}/loss'.format(dataset_name), loss.item(), train_step)
# writer.add_scalar('Train/{}/Di_score'.format(dataset_name), dice_train, train_step)
writer.add_scalar('Train/{}/IOU'.format(dataset_name), iou_train, train_step)
# backward
multi_loss = sum(datas_loss_list)
optimizer.zero_grad()
multi_loss.backward()
optimizer.step()
# logging average per batch
writer.add_scalar('Train/Average/sum_loss',multi_loss.item(), train_step)
# writer.add_scalar('Train/Average/Di_score', sum(dice_train_list)/len(dice_train_list), train_step)
writer.add_scalar('Train/Average/IOU', sum(iou_train_list)/len(iou_train_list), train_step)
# end one training batch
if config.debug: break
# print
print('Epoch {}, Total train step {} || sum_loss: {}, Avg Dice score: {}, Avg IOU: {}'.
format(epoch, train_step, round(multi_loss.item(),5), round(sum(dice_train_list)/len(dice_train_list),4),
round(sum(iou_train_list)/len(iou_train_list),4)))
print('Datasets: ', config.data.name, ' || loss: ', [round(x.item(), 4) for x in datas_loss_list],
' || Dice score: ', [round(x, 4) for x in dice_train_list],
' || IOU: ', [round(x, 4) for x in iou_train_list])
# -----------------------------------------------------------------
# validate
# ----------------------------------------------------------------
model.eval()
dice_val_list = [] # record results for each dataset
iou_val_list = []
loss_val_list = []
# eval each dataset
for dataset_name in config.data.name:
dice_val_sum= 0
iou_val_sum = 0
loss_val_sum = 0
num_val = 0
for batch_id, batch in enumerate(val_loaders[dataset_name]):
img = batch['image'].cuda().float()
label = batch['label'].cuda().float()
# domain_label = batch['set_id']
if K == 1:
d = '0'
else:
d = str(data2domain[dataset_name])
# domain_label = torch.nn.functional.one_hot(domain_label, 4).float().cuda()
batch_len = img.shape[0]
with torch.no_grad():
other_models = set(['SwinUNETR','UNETR'])
if config.model in other_models:
output = model(img)
else:
output = model(img,d=d)['seg']
output = torch.sigmoid(output)
# calculate loss
assert (output.shape == label.shape)
losses = []
for function in criterion:
losses.append(function(output, label))
loss_val_sum += sum(losses)*batch_len
# calculate metrics
output = output.cpu().numpy() > 0.5
label = label.cpu().numpy()
dice_val_sum += metrics.dc(output, label)*batch_len
iou_val_sum += metrics.jc(output, label)*batch_len
num_val += batch_len
# end one val batch
if config.debug: break
# logging per epoch for one dataset
loss_val_epoch, dice_val_epoch, iou_val_epoch = loss_val_sum/num_val, dice_val_sum/num_val, iou_val_sum/num_val
dice_val_list.append(dice_val_epoch)
loss_val_list.append(loss_val_epoch.item())
iou_val_list.append(iou_val_epoch)
writer.add_scalar('Val/{}/loss'.format(dataset_name), loss_val_epoch.item(), epoch)
writer.add_scalar('Val/{}/Di_score'.format(dataset_name), dice_val_epoch, epoch)
writer.add_scalar('Val/{}/IOU'.format(dataset_name), iou_val_epoch, epoch)
# logging average per epoch
writer.add_scalar('Val/Average/sum_loss', sum(loss_val_list), epoch)
writer.add_scalar('Val/Average/Di_score', sum(dice_val_list)/len(dice_val_list), epoch)
writer.add_scalar('Val/Average/IOU', sum(iou_val_list)/len(iou_val_list), epoch)
# print
print('Epoch {}, Validation || sum_loss: {}, Avg Dice score: {}, Avg IOU: {}'.
format(epoch, round(sum(loss_val_list),5),
round(sum(dice_val_list)/len(dice_val_list),4), round(sum(iou_val_list)/len(iou_val_list),4)))
print('Datasets: ', config.data.name, ' || loss: ', [round(x, 4) for x in loss_val_list],
' || Dice score: ', [round(x, 4) for x in dice_val_list],
' || IOU: ', [round(x, 4) for x in iou_val_list])
# scheduler step, record lr
writer.add_scalar('Lr', scheduler.get_last_lr()[0], epoch)
scheduler.step()
# store model using the average iou
avg_val_iou_epoch = sum(iou_val_list)/len(iou_val_list)
if avg_val_iou_epoch > max_iou:
torch.save(model.state_dict(), best_model_dir)
max_iou = avg_val_iou_epoch
best_epoch = epoch
print('New best epoch {}!==============================='.format(epoch))
end = time.time()
time_elapsed = end-start
print('Training and evaluating on epoch{} complete in {:.0f}m {:.0f}s'.
format(epoch, time_elapsed // 60, time_elapsed % 60))
# end one epoch
if config.debug: return
print('Complete training ---------------------------------------------------- \n The best epoch is {}'.format(best_epoch))
return
# ========================================================================================================
def test(config, model, model_dir, test_loaders, criterion):
model.load_state_dict(torch.load(model_dir))
model.eval()
dice_test_list = [] # record results for each dataset
iou_test_list = []
loss_test_list = []
# test each dataset
for dataset_name in config.data.name:
dice_test_sum= 0
iou_test_sum = 0
loss_test_sum = 0
num_test = 0
for batch_id, batch in enumerate(test_loaders[dataset_name]):
img = batch['image'].cuda().float()
label = batch['label'].cuda().float()
# domain_label = batch['set_id']
if K == 1:
d = '0'
else:
d = str(data2domain[dataset_name])
batch_len = img.shape[0]
other_models = set(['SwinUNETR','UNETR'])
with torch.no_grad():
if config.model in other_models:
output = model(img)
else:
output = model(img,d=d)['seg']
output = torch.sigmoid(output)
# calculate loss
assert (output.shape == label.shape)
losses = []
for function in criterion:
losses.append(function(output, label))
loss_test_sum += sum(losses)*batch_len
# calculate metrics
output = output.cpu().numpy() > 0.5
label = label.cpu().numpy()
dice_test_sum += metrics.dc(output, label)*batch_len
iou_test_sum += metrics.jc(output, label)*batch_len
num_test += batch_len
# end one test batch
if config.debug: break
# logging results for one dataset
loss_test_epoch, dice_test_epoch, iou_test_epoch = loss_test_sum/num_test, dice_test_sum/num_test, iou_test_sum/num_test
dice_test_list.append(dice_test_epoch)
loss_test_list.append(loss_test_epoch.item())
iou_test_list.append(iou_test_epoch)
# logging average and store results
dataset_name_list = config.data.name+['Total']
loss_test_list.append(sum(loss_test_list))
dice_test_list.append(sum(dice_test_list)/len(dice_test_list))
iou_test_list.append(sum(iou_test_list)/len(iou_test_list))
df = pd.DataFrame({
'Name': dataset_name_list,
'loss': loss_test_list,
'Di_score': dice_test_list,
'IOU': iou_test_list
})
df.to_csv(test_results_dir, index=False)
# print
print('========================================================================================')
print('Test || Average loss: {}, Dice score: {}, IOU: {}'.
format(round(sum(loss_test_list),5),
round(sum(dice_test_list)/len(dice_test_list),4), round(sum(iou_test_list)/len(iou_test_list),4)))
print('Datasets: ', config.data.name, ' || loss: ', [round(x, 4) for x in loss_test_list],
' || Dice score: ', [round(x, 4) for x in dice_test_list], ' || IOU: ', [round(x, 4) for x in iou_test_list])
return
if __name__=='__main__':
now = datetime.now()
torch.cuda.empty_cache()
parser = argparse.ArgumentParser(description='Train experiment')
parser.add_argument('--exp_name', type=str, default='tmp')
parser.add_argument('--config_yml', type=str,default='Configs/multi_train_local.yml')
parser.add_argument('--model', type=str,default='DeepResUnet')
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--adapt_method', type=str, default=False)
parser.add_argument('--num_domains', type=str, default=False)
parser.add_argument('--dataset', type=str, nargs='+', default='isic2018')
parser.add_argument('--k_fold', type=str, default='No')
args = parser.parse_args()
config = yaml.load(open(args.config_yml), Loader=yaml.FullLoader)
config['model'] = args.model
config['train']['batch_size']=args.batch_size
config['data']['name'] = args.dataset
config['model_adapt']['adapt_method']=args.adapt_method
config['model_adapt']['num_domains']=args.num_domains
config['data']['k_fold'] = args.k_fold
# print config and args
print(yaml.dump(config, default_flow_style=False))
for arg in vars(args):
print("{:<20}: {}".format(arg, getattr(args, arg)))
store_config = config
config = DotDict(config)
# logging tensorbord, config, best model
exp_dir = '{}/results/{}_{}_{}'.format(config.root_dir,args.exp_name,config.model,now.strftime("%Y%m%d_%H%M"))
os.makedirs(exp_dir, exist_ok=True)
writer = SummaryWriter(exp_dir)
best_model_dir = '{}/best.pth'.format(exp_dir)
test_results_dir = '{}/test_results.csv'.format(exp_dir)
# store yml file
if config.debug == False:
yaml.dump(store_config, open('{}/exp_config.yml'.format(exp_dir), 'w'))
if config.model_adapt.num_domains != False:
K = int(config.model_adapt.num_domains)
else:
from typing import List
K = len(config.data.name) if isinstance(config.data.name, List) else 1 # num of domains
print('K == {}'.format(K))
data2domain = {config.data.name[i]:i for i in range(len(config.data.name))}
main(config)