-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
211 lines (189 loc) · 6.16 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# Importing required libraries
import warnings
warnings.filterwarnings("ignore")
import json
import subprocess
import sys
from llama_cpp import Llama
from llama_cpp_agent import LlamaCppAgent
from llama_cpp_agent import MessagesFormatterType
from llama_cpp_agent.providers import LlamaCppPythonProvider
from llama_cpp_agent.chat_history import BasicChatHistory
from llama_cpp_agent.chat_history.messages import Roles
import gradio as gr
from huggingface_hub import hf_hub_download
from typing import List, Tuple
from logger import logging
from exception import CustomExceptionHandling
# Download gguf model files
llm = None
llm_model = None
hf_hub_download(
repo_id="bartowski/SmolLM2-135M-Instruct-GGUF",
filename="SmolLM2-135M-Instruct-Q6_K.gguf",
local_dir="./models",
)
hf_hub_download(
repo_id="bartowski/SmolLM2-360M-Instruct-GGUF",
filename="SmolLM2-360M-Instruct-Q6_K.gguf",
local_dir="./models",
)
# Set the title and description
title = "SmolLM🤗 Llama.cpp"
description = """SmolLM2, a family of three small language models, performs well in instruction following and reasoning. The largest model significantly improves over its predecessor through advanced training techniques."""
def respond(
message: str,
history: List[Tuple[str, str]],
model: str,
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
top_k: int,
repeat_penalty: float,
):
"""
Respond to a message using the SmolLM2 model via Llama.cpp.
Args:
- message (str): The message to respond to.
- history (List[Tuple[str, str]]): The chat history.
- model (str): The model to use.
- system_message (str): The system message to use.
- max_tokens (int): The maximum number of tokens to generate.
- temperature (float): The temperature of the model.
- top_p (float): The top-p of the model.
- top_k (int): The top-k of the model.
- repeat_penalty (float): The repetition penalty of the model.
Returns:
str: The response to the message.
"""
try:
# Load the global variables
global llm
global llm_model
# Load the model
if llm is None or llm_model != model:
llm = Llama(
model_path=f"models/{model}",
flash_attn=False,
n_gpu_layers=0,
n_batch=32,
n_ctx=8192,
)
llm_model = model
provider = LlamaCppPythonProvider(llm)
# Create the agent
agent = LlamaCppAgent(
provider,
system_prompt=f"{system_message}",
predefined_messages_formatter_type=MessagesFormatterType.CHATML,
debug_output=True,
)
# Set the settings like temperature, top-k, top-p, max tokens, etc.
settings = provider.get_provider_default_settings()
settings.temperature = temperature
settings.top_k = top_k
settings.top_p = top_p
settings.max_tokens = max_tokens
settings.repeat_penalty = repeat_penalty
settings.stream = True
messages = BasicChatHistory()
# Add the chat history
for msn in history:
user = {"role": Roles.user, "content": msn[0]}
assistant = {"role": Roles.assistant, "content": msn[1]}
messages.add_message(user)
messages.add_message(assistant)
# Get the response stream
stream = agent.get_chat_response(
message,
llm_sampling_settings=settings,
chat_history=messages,
returns_streaming_generator=True,
print_output=False,
)
# Log the success
logging.info("Response stream generated successfully")
# Generate the response
outputs = ""
for output in stream:
outputs += output
yield outputs
# Handle exceptions that may occur during the process
except Exception as e:
# Custom exception handling
raise CustomExceptionHandling(e, sys) from e
# Create a chat interface
demo = gr.ChatInterface(
respond,
additional_inputs_accordion=gr.Accordion(
label="⚙️ Parameters", open=False, render=False
),
additional_inputs=[
gr.Dropdown(
choices=[
"SmolLM2-135M-Instruct-Q6_K.gguf",
"SmolLM2-360M-Instruct-Q6_K.gguf",
],
value="SmolLM2-135M-Instruct-Q6_K.gguf",
label="Model",
info="Select the AI model to use for chat",
),
gr.Textbox(
value="You are a helpful AI assistant focused on accurate and ethical responses.",
label="System Prompt",
info="Define the AI assistant's personality and behavior",
lines=2,
),
gr.Slider(
minimum=512,
maximum=4096,
value=2048,
step=512,
label="Max Tokens",
info="Maximum length of response (higher = longer replies)",
),
gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature",
info="Creativity level (higher = more creative, lower = more focused)",
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
info="Nucleus sampling threshold",
),
gr.Slider(
minimum=1,
maximum=100,
value=40,
step=1,
label="Top-k",
info="Limit vocabulary choices to top K tokens",
),
gr.Slider(
minimum=1.0,
maximum=2.0,
value=1.1,
step=0.1,
label="Repetition Penalty",
info="Penalize repeated words (higher = less repetition)",
),
],
theme="Ocean",
submit_btn="Send",
stop_btn="Stop",
title=title,
description=description,
chatbot=gr.Chatbot(scale=1, show_copy_button=True),
flagging_mode="never",
)
# Launch the chat interface
if __name__ == "__main__":
demo.launch(debug=False)