-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
132 lines (87 loc) · 2.62 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import time
import platform
import numpy as np
import gzip
import torch.nn as nn
import pickle
def save_text(data, save_path):
with open(save_path, mode='w') as f:
f.write('\n'.join(data))
def save_picke(data, save_path):
with open(save_path, mode="wb") as f:
pickle.dump(data, f)
def hms(seconds):
seconds = np.floor(seconds)
minutes, seconds = divmod(seconds, 60)
hours, minutes = divmod(minutes, 60)
return "%02d:%02d:%02d" % (hours, minutes, seconds)
def timestamp():
return time.strftime("%Y%m%d-%H%M%S", time.localtime())
def hostname():
return platform.node()
def generate_expid(arch_name):
return "%s-%s-%s" % (arch_name, hostname(), timestamp())
def one_hot(vec, m=None):
if m is None:
m = int(np.max(vec)) + 1
return np.eye(m)[vec]
def log_losses(y, t, eps=1e-15):
if t.ndim == 1:
t = one_hot(t)
y = np.clip(y, eps, 1 - eps)
losses = -np.sum(t * np.log(y), axis=1)
return losses
def log_loss(y, t, eps=1e-15):
"""
cross entropy loss, summed over classes, mean over batches
"""
losses = log_losses(y, t, eps)
return np.mean(losses)
def proteins_acc(out, label, mask):
out = np.argmax(out, axis=2)
return np.sum(((out == label).flatten()*mask.flatten())).astype('float32') / np.sum(mask).astype('float32')
def accuracy(y, t):
if t.ndim == 2:
t = np.argmax(t, axis=1)
predictions = np.argmax(y, axis=1)
return np.mean(predictions == t)
def softmax(x):
m = np.max(x, axis=1, keepdims=True)
e = np.exp(x - m)
return e / np.sum(e, axis=1, keepdims=True)
def entropy(x):
h = -x * np.log(x)
h[np.invert(np.isfinite(h))] = 0
return h.sum(1)
def conf_matrix(p, t, num_classes):
if p.ndim == 1:
p = one_hot(p, num_classes)
if t.ndim == 1:
t = one_hot(t, num_classes)
return np.dot(p.T, t)
def accuracy_topn(y, t, n=5):
if t.ndim == 2:
t = np.argmax(t, axis=1)
predictions = np.argsort(y, axis=1)[:, -n:]
accs = np.any(predictions == t[:, None], axis=1)
return np.mean(accs)
def current_learning_rate(schedule, idx):
s = schedule.keys()
s.sort()
current_lr = schedule[0]
for i in s:
if idx >= i:
current_lr = schedule[i]
return current_lr
def load_gz(path): # load a .npy.gz file
if path.endswith(".gz"):
f = gzip.open(path, 'rb')
return np.load(f)
else:
return np.load(path)
def log_loss_std(y, t, eps=1e-15):
"""
cross entropy loss, summed over classes, mean over batches
"""
losses = log_losses(y, t, eps)
return np.std(losses)