-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
205 lines (153 loc) · 6.75 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import h5py
import pickle
import numpy as np
import pandas as pd
from abc import ABC, abstractmethod
from sklearn.model_selection import train_test_split, StratifiedKFold
import functions as fn
from print import pr_cyan, pr_orange
def compute_counts(df, target):
proteins = set(df['prot1']).union(set(df['prot2']))
counts_y_true_1 = {protein: 0 for protein in proteins}
counts_y_true_0 = {protein: 0 for protein in proteins}
for i, (_, row) in enumerate(df.iterrows()):
if target[i] == 1:
counts_y_true_1[row['prot1']] += 1
counts_y_true_1[row['prot2']] += 1
else:
counts_y_true_0[row['prot1']] += 1
counts_y_true_0[row['prot2']] += 1
return counts_y_true_1, counts_y_true_0
def create_ppi_dataset(prot1, emb_prot1, prot2, emb_prot2, target):
df = pd.DataFrame({
'prot1': prot1,
'emb_prot1': emb_prot1,
'prot2': prot2,
'emb_prot2': emb_prot2,
'target': target
})
df.to_numpy()
if df['emb_prot1'].shape[0] != df['emb_prot2'].shape[0]:
raise ValueError("Arrays emb_prot1 and emb_prot2 should have the same length")
X = df[['emb_prot1', 'emb_prot2', 'prot1', 'prot2']]
if df['target'].dtype == 'object':
y = df['target'].map({'True': True, 'False': False}).astype(int)
else:
y = df['target'].astype(int)
return X, np.array(y)
def load_h5_as_df(input_file):
with h5py.File(input_file, 'r') as h5:
serialized = h5['dataset'][()]
dataset = pickle.loads(serialized.tostring())
return create_ppi_dataset(
[row[0] for row in dataset],
[np.array(row[1]) for row in dataset], # Assuming row[1] is an ndarray
[row[2] for row in dataset],
[np.array(row[3]) for row in dataset], # Assuming row[3] is an ndarray
[row[4] for row in dataset] # Assuming row[4] is a boolean
)
class AbstractDataset(ABC):
@abstractmethod
def load(self):
"""Loads the dataset."""
pass
@abstractmethod
def outer_cv(self):
"""Returns an array with the train/test indexes."""
pass
@abstractmethod
def outer_splits(self):
"""Returns the number of train/tests splits returned by outer_cv."""
pass
@abstractmethod
def name(self):
"""Returns the dataset name."""
pass
@abstractmethod
def __str__(self):
pass
def __repr__(self):
return self.__str__()
@staticmethod
def filename(file_path):
return file_path.split('/')[-1]
def get_X_train_df(self):
return self.X_train
def get_y_train(self):
return self.y_train
class Dataset(AbstractDataset):
def __init__(self, input_file, test_size=0.0, outer_cv_splits=3, random_state=2024, make_protein_level_splits=False, print_debug_messages=True):
self.X = None
self.y = None
self.X_train = None
self.X_test = None
self.y_train = None
self.y_test = None
self.test_size = test_size
self.input_file = input_file
self.outer_cv_splits = outer_cv_splits
self.random_state = random_state
self.make_protein_level_splits = make_protein_level_splits
self.print_debug_messages = print_debug_messages
def load(self):
self.X, self.y = load_h5_as_df(self.input_file)
if self.test_size > 0.0:
self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(
self.X, self.y, test_size=self.test_size, random_state=self.random_state, stratify=self.y)
if self.make_protein_level_splits:
self.X_train, self.y_train = fn.remove_from_train(self.X_train, self.y_train, self.X_test)
if self.print_debug_messages:
pr_orange(f'Size after initial train/test split: {self.X_train.shape[0]} with test_size = {self.test_size}')
else:
pr_cyan('INFO: Using all data for external cross-validation as test_size = 0.0')
self.X_train = self.X
self.y_train = self.y
def outer_cv(self):
cv = StratifiedKFold(n_splits=self.outer_cv_splits)
return cv.split(self.X_train, self.y_train)
def outer_splits(self):
return self.outer_cv_splits
def name(self):
return self.filename(self.input_file)
def __str__(self):
if self.X is None or self.y is None:
return f"Dataset(input_file = {self.input_file}, test_size = {self.test_size})"
else:
return f"Dataset(X = {self.X.shape}, y = {self.y.shape}, input_file = {self.input_file}, test_size = {self.test_size})"
class PartitionedDataset(AbstractDataset):
def __init__(self, train_file, val_file, debug_size=0.0):
self.X_train_original = None
self.y_train_original = None
self.X_val_original = None
self.y_val_original = None
self.X_train = None
self.y_train = None
self.train_indices = None
self.val_indices = None
self.train_file = train_file
self.val_file = val_file
self.debug_size = debug_size
def load(self):
self.X_train_original, self.y_train_original = load_h5_as_df(self.train_file)
self.X_val_original, self.y_val_original = load_h5_as_df(self.val_file)
if self.debug_size > 0.0:
debug_test_size = 1 - self.debug_size
self.X_train_original, _, self.y_train_original, _ = train_test_split(
self.X_train_original, self.y_train_original, test_size=debug_test_size, random_state=2024, stratify=self.y_train_original)
self.X_val_original, _, self.y_val_original, _ = train_test_split(
self.X_val_original, self.y_val_original, test_size=debug_test_size, random_state=2024, stratify=self.y_val_original)
self.X_train = pd.concat([self.X_train_original, self.X_val_original], axis=0).reset_index(drop=True)
self.y_train = np.concatenate([self.y_train_original, self.y_val_original], axis=0)
self.train_indices = np.arange(len(self.X_train_original))
self.val_indices = np.arange(len(self.X_train_original), len(self.X_train))
def outer_cv(self):
return [(self.train_indices, self.val_indices)]
def outer_splits(self):
return 1
def name(self):
return f'{self.filename(self.train_file)}_{self.filename(self.val_file)}'
def __str__(self):
if self.X_train is None or self.y_train is None:
return f"PartitionedDataset(train_file = {self.train_file}, val_file = {self.val_file})"
else:
return f"PartitionedDataset(Train = {self.X_train_original.shape}, Validation = {self.X_val_original.shape}, train_file = {self.train_file}, val_file = {self.val_file})"