-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathforecasting.py
52 lines (51 loc) · 2.24 KB
/
forecasting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import numpy as np
import pandas as pd
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt
import seaborn as sns
import streamlit as st
from matplotlib.backends.backend_pdf import PdfPages
def linear_regression(df):
x = np.arange(1, len(df) + 6).reshape(-1, 1) # Expand x range by 5 units
plt.figure(figsize=(10, 5)) # Create a new figure
plt.xticks(np.arange(1, len(df) + 6, 1)) # Set the x-axis tick marks with step size 1
colors = ['blue', 'green', 'red', 'orange', 'purple', 'brown', 'pink', 'gray', 'cyan']
pred_dfs = []
for i, column in enumerate(df.columns[3:]):
y = df[column].values
# Create a linear regression model
model = LinearRegression()
# Fit the model to the data
model.fit(x[:-5], y) # Fit the model to the original data
# Predict the y values using the model
y_pred = model.predict(x)
# Plot the result
sns.scatterplot(x=np.arange(1, len(df) + 1), y=y, color=colors[i], label='Actual' + ' ' + column)
sns.lineplot(x=np.arange(1, len(df) + 6), y=y_pred, color=colors[i], label='Predicted' + ' ' + column) # Expand x range for prediction
# Show the y value at each of the last 5 predicted points
predicted_values = []
dct = {}
for j in range(len(df) + 1, len(df) + 6):
plt.text(j, y_pred[j-1], f'{y_pred[j-1]:.2f}', ha='center', va='bottom')
predicted_values.append(y_pred[j-1])
dct[column] = predicted_values
pred_df = pd.DataFrame(dct, index=np.arange(len(df) + 1, len(df) + 6))
pred_dfs.append(pred_df)
combined_df = pd.concat(pred_dfs, axis=1)
plt.title('Forecasting Test Scores')
plt.xlabel('Test ID')
plt.ylabel('Test Score')
plt.legend()
with PdfPages("temp/plot3.pdf") as pdf:
pdf.savefig()
st.pyplot(plt)
plt.close()
st.write(combined_df)
fig, ax = plt.subplots(figsize=(12,4))
ax.set_title('Forecasting Test Scores')
ax.axis('tight')
ax.axis('off')
the_table = ax.table(cellText=combined_df.values, colLabels=combined_df.columns, loc='center')
with PdfPages("temp/table1.pdf") as pp:
pp.savefig(fig, bbox_inches='tight')
plt.close()