-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathword2vec.py
49 lines (38 loc) · 1.23 KB
/
word2vec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 19 15:27:36 2019
@author: shweta
"""
# Importing the libraries
import pandas as pd
import json
import csv
import re
import nltk
input_data = pd.read_csv("/home/shweta/Desktop/project/dataset.csv")
dataset1 = {"reviewText": input_data["review_text"], }
dataset = pd.DataFrame(data = dataset1)
dataset=dataset.fillna("Product was okay")
print(dataset.isnull().sum())
# Cleaning the texts
import re
import nltk
from nltk.stem.porter import PorterStemmer
corpus = []
#for i in range(1, 1689188):
#for index, row in dataset.iterrows():
for i in range(1,30000):
#review = re.su1b("[^a-zA-Z]", " ", row['reviewText'])
review = re.sub("[^a-zA-Z]", " ", dataset['reviewText'][i])
review = review.lower()
review = review.split()
corpus.append(review)
print("works")
#word2vec converting words to vectors?word embedding
from gensim.models import Word2Vec
model_ted = Word2Vec(sentences=corpus, size=100, window=5, min_count=5, workers=4, sg=0)
model_ted.wv.most_similar('good')
from gensim.test.utils import common_texts, get_tmpfile
path = get_tmpfile("/home/shweta/Desktop/project/word2vec.model")
model_ted.save("/home/shweta/Desktop/project/word2vec.model")