-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
97 lines (86 loc) · 4.07 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# Import necessary libraries
import argparse
import torch
from torch import nn, optim
from torchvision import datasets, transforms, models
from model import create_model # Import a function to create your custom model
# Define a function to train the model
def train_model(data_dir, save_dir, arch, learning_rate, hidden_units, epochs, gpu):
# Check if GPU is available
device = torch.device("cuda" if gpu and torch.cuda.is_available() else "cpu")
# Define data transformations
data_transforms = {
'train': transforms.Compose([
transforms.RandomRotation(30),
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'valid': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
}
# Load the datasets
image_datasets = {x: datasets.ImageFolder(data_dir + '/' + x, transform=data_transforms[x]) for x in ['train', 'valid']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=64, shuffle=True) for x in ['train', 'valid']}
# Create the model
model = create_model(arch, hidden_units)
model.to(device)
# Define loss function and optimizer
criterion = nn.NLLLoss()
optimizer = optim.Adam(model.classifier.parameters(), lr=learning_rate)
# Training loop
for epoch in range(epochs):
model.train()
running_loss = 0.0
for inputs, labels in dataloaders['train']:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
# Validation
model.eval()
validation_loss = 0.0
accuracy = 0
with torch.no_grad():
for inputs, labels in dataloaders['valid']:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
validation_loss += criterion(outputs, labels)
ps = torch.exp(outputs)
top_p, top_class = ps.topk(1, dim=1)
equals = top_class == labels.view(*top_class.shape)
accuracy += torch.mean(equals.type(torch.FloatTensor))
print(f"Epoch {epoch+1}/{epochs}.. "
f"Training loss: {running_loss/len(dataloaders['train']):.3f}.. "
f"Validation loss: {validation_loss/len(dataloaders['valid']):.3f}.. "
f"Validation accuracy: {accuracy/len(dataloaders['valid']):.3f}")
# Save the model as a checkpoint
model.class_to_idx = image_datasets['train'].class_to_idx
checkpoint = {
'arch': arch,
'hidden_units': hidden_units,
'state_dict': model.state_dict(),
'class_to_idx': model.class_to_idx
}
torch.save(checkpoint, save_dir)
if __name__ == "__main__":
# Define command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument("data_dir", help="Path to the dataset directory")
parser.add_argument("--save_dir", default="checkpoint.pth", help="Directory to save the model checkpoint")
parser.add_argument("--arch", default="vgg16", help="Model architecture (e.g., 'vgg16', 'resnet50')")
parser.add_argument("--learning_rate", type=float, default=0.001, help="Learning rate for training")
parser.add_argument("--hidden_units", type=int, default=512, help="Number of hidden units in the classifier")
parser.add_argument("--epochs", type=int, default=5, help="Number of training epochs")
parser.add_argument("--gpu", action="store_true", help="Use GPU for training")
args = parser.parse_args()
# Call the train_model function
train_model(args.data_dir, args.save_dir, args.arch, args.learning_rate, args.hidden_units, args.epochs, args.gpu)