-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpart1&2.Rmd
248 lines (165 loc) · 4.93 KB
/
part1&2.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
---
title: "hw07"
author: "shiyi"
date: "2/27/2022"
output: html_document
---
```{r setup, include=FALSE}
library(tidyverse)
library(tidymodels)
library(rcfss)
```
# This is part one, Student debt
```{r spiltdata}
set.seed(100)
data("scorecard")
scorecard <- scorecard %>%
select(-all_of(c("unitid","name"))) %>%
modify_if(is.character, as.factor)
#spilt it
score_spilt <- initial_split(scorecard, prop = 3/4)
score_train <- training(score_spilt)
score_test <- testing(score_spilt)
```
```{r trianmodel}
#train model
line_model <- linear_reg() %>%
set_engine("lm") %>%
set_mode("regression")
line_model %>%
fit(debt ~ . - state,
data = score_train) %>%
predict(new_data = score_test) %>%
mutate(truescore = score_test$debt) %>%
# report RMSE as required
rmse( truth = truescore, estimate = .pred)
```
## linear regression
Root-mean_square deviation means deviation of the estimation of the model
RMSE for the model is 3108.3261071
```{r fold10}
fold10 <- vfold_cv(score_train , v = 10, strata = debt)
line_model %>%
fit_resamples(debt ~ . - state, resamples = fold10) %>%
collect_metrics()
```
## cross-valid
RMSE for the ten-fold cross-validated model is 3108.3261071
```{r fold}
fold10 <- vfold_cv(score_train, v = 10, strata = debt)
line_model %>%
fit_resamples(debt ~ . - state, resamples = fold10) %>%
collect_metrics()
```
```{r decision_treee}
treemodel <- decision_tree() %>%
set_engine( engine = "rpart") %>%
set_mode (mode = "regression")
treemodel %>%
fit_resamples(debt ~ . - state, resample = fold10)%>%
collect_metrics()
```
## Tree model
RMSE for the tree model ten-fold cross-validated model is 3108.3261071
# Part 2 Predicting attitudes towards racist college professors
``` {r data2}
data("gss", package = "rcfss")
data("gss", package = "rcfss")
final_data <- gss %>%
select(-all_of(c("id","wtss")))
```
``` {r spilt}
set.seed(100)
gss_split <- initial_split(gss, strata = colrac, prop = 3/4)
gss_train <- training(gss_split)
gss_test <- testing(gss_split)
```
``` {r logistic_regression_model}
#logistic regression model
lrmod <- logistic_reg(mode = "classification") %>%
set_engine(engine = "glm")
# cross validation
gss_folds <- vfold_cv(data = gss_train, v = 10, strata = colrac)
# train it
lrmod %>%
fit_resamples(colrac ~ age + black + degree + partyid_3 + sex + south, resamples = gss_folds) %>%
collect_metrics()
```
##accuracy
accuracy of the model is 0.5291205, roc_auc is 0.5475663 .
```{r forest}
# cross validation
gss_folds <- vfold_cv(gss_train, v = 10, strata = colrac)
forest_mod <- rand_forest(
mode = "classification",
engine = "ranger"
)
#recipe
gss_rec <- recipe(colrac ~ ., data = gss_train) %>%
update_role(id, wtss, new_role = "ID") %>%
step_naomit(colrac, skip = TRUE) %>%
step_impute_median(all_numeric_predictors()) %>%
step_impute_mode(all_nominal_predictors())
# workflow
workflow() %>%
add_recipe(gss_rec) %>%
add_model(forest_mod) %>%
fit_resamples(resamples = gss_folds) %>%
collect_metrics()
```
##accuracy for forest model
accuracy of the model is 0.8066150, for roc_auc is 0.8851214
```{r neigh }
knn_mod <- nearest_neighbor(neighbors = 5) %>%
set_engine("kknn") %>%
set_mode("classification")
gss_rec_nei <- recipe(colrac ~ ., data = gss_train) %>%
update_role(id, wtss, new_role = "ID") %>%
step_naomit(colrac, skip = TRUE) %>%
step_medianimpute(all_numeric()) %>%
step_modeimpute(all_nominal(), -all_outcomes()) %>%
step_normalize(all_numeric())
gss_wf_nei <- workflow() %>%
add_recipe(gss_rec_nei) %>%
add_model(knn_mod)
gss_wf_nei %>%
fit_resamples(resamples = gss_folds) %>%
collect_metrics()
```
##accuracy for five-nearest neighbors model
accuracy for five-nearest neighbors model is accuracy for five-nearest neighbors model,
roc_auc is 0.7992496
``` {r ridge logistic regression model }
ridge_mod <- logistic_reg(mode = "classification",
penalty = .01,
mixture = 0) %>%
set_engine(engine = "glm")
#workflow, tired of naming it
gss_wf3 <- workflow() %>%
#just use previous one
add_recipe(gss_rec_nei) %>%
add_model(ridge_mod)
# training the model
gss_wf3 %>%
fit_resamples(resamples = gss_folds) %>%
collect_metrics()
```
## ridge model
ridge logistic regression model, accuracy is accuracy, roc_auc is 0.8558371
```{r best}
rec_best <- recipe(colrac ~ ., data = gss_test) %>%
update_role(id, wtss, new_role = "ID") %>%
step_naomit(colrac, skip = TRUE) %>%
step_impute_median(all_numeric()) %>%
step_impute_mode(all_nominal(), -all_outcomes()) %>%
step_dummy(all_nominal(), -all_outcomes())
workflow() %>%
add_recipe(rec_best) %>%
add_model(forest_mod) %>%
fit(data = gss_train) %>%
predict(new_data = gss_test) %>%
mutate(true_racist = gss_test$colrac) %>%
accuracy(truth = true_racist, estimate = .pred_class)
```
## final
accuracy is 0.7943925