-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
96 lines (82 loc) · 2.54 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#!/usr/bin/env python3
__author__ = "Shivchander Sudalairaj"
__license__ = "MIT"
'''
This is a python implementation of the Izhikevich Neuron Model
Credits: Eugene M. Izhikevich (neuron_RS2.m)
'''
import matplotlib.pyplot as plt
import numpy as np
from model import INeuron
def q1():
"""
:return: None (Saves two graphs in the current directory)
Running simulations with different I values to identify the relationship with mean spike rate and I
And performing a visual comparison of the spikes by varying the I
"""
I = np.arange(0, 20.5, 0.5)
r = []
fig, axs = plt.subplots(5, figsize=(6, 8))
plt_num = 0
for i in I:
neuron = INeuron()
neuron.simulate(I=i)
r.append(neuron.mean_spike_rate())
if i in [1, 5, 10, 15, 20]:
axs[plt_num].plot(neuron.get_timesteps(), neuron.get_v())
axs[plt_num].set_title("I = " + str(i))
axs[plt_num].set_ylabel("V_m")
plt_num += 1
plt.tight_layout()
plt.savefig('VvsI.pdf')
plt.clf()
plt.plot(I, r)
plt.xlabel('Input (I)')
plt.ylabel('Mean Spike Rate')
plt.title('Mean Spike Rate (R) vs I')
plt.savefig('RvsI.pdf')
plt.clf()
def q2(wBA=10, Ia=5.0):
"""
:return: None (Saves two graphs in the current directory)
Network of two neurons A and B
"""
Ib = np.arange(0, 20.5, 0.5)
rq1 = []
rb = []
fig, axs = plt.subplots(5, figsize=(6, 8))
plt_num = 0
# Simulating Neuron A separately to obtain time series and using that as input for
# separate simulation of Neuron B
neuron_A = INeuron()
neuron_A.simulate(I=Ia)
for i in Ib:
# for graph comparison
neuron_Q1 = INeuron()
neuron_Q1.simulate(I=i)
rq1.append(neuron_Q1.mean_spike_rate())
_Ib = i + (neuron_A.spike_ts * wBA)
neuron_B = INeuron()
neuron_B.simulate(I=_Ib)
rb.append(neuron_B.mean_spike_rate())
if i in [1, 5, 10, 15, 20]:
axs[plt_num].plot(neuron_B.get_timesteps(), neuron_B.get_v())
axs[plt_num].set_title("I = " + str(i))
axs[plt_num].set_ylabel("V_m")
plt_num += 1
plt.tight_layout()
plt.savefig('VvsI_2.pdf')
plt.clf()
plt.plot(Ib, rb, 'b-', label="R_b")
plt.plot(Ib, rq1, 'r--', label="R")
plt.xlabel('Input (I)')
plt.ylabel('Mean Spike Rate')
plt.legend(loc="upper left")
plt.title('Mean Spike Rate (R) vs I')
plt.savefig('RvsI_2.pdf')
plt.clf()
def main():
q1()
q2()
if __name__ == '__main__':
main()