-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_all.py
304 lines (268 loc) · 14 KB
/
run_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import os
from os.path import join, isdir, isfile
from path_dict import PathDict
path_dict = PathDict()
proj_root = path_dict.proj_root
ds_root = path_dict.ds_root
from utils.ImageShow import *
from utils.ReadingDataset import load_model_and_dataset, getTagScore, loadTags
from process_perturb_res import vis_perturb_res
from visual_meth.integrated_grad import integrated_grad
from visual_meth.blur_integrated_grad import blur_integrated_grad
from visual_meth.gradients import gradients
from visual_meth.perturbation_area import video_perturbation
from visual_meth.grad_cam import grad_cam
from visual_meth.score_cam import score_cam
from visual_meth.smooth_grad import smooth_grad
from visual_meth.excitation_backprop import excitation_bp
from visual_meth.guided_backprop import guided_bp
from visual_meth.linear_approximation import linear_appr
from visual_meth.xrai import xrai
import torch
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.utils.data import Dataset, DataLoader
from torch.nn.parallel import DistributedDataParallel as DDP
import pandas as pd
from tqdm import tqdm
import math
import time
import csv
import copy
def main_worker(gpu, args):
if args.vis_method == 'perturb':
if args.model == 'v16l':
step = 14
sigma = 23
else:
step = 7
sigma = 11
batch_size = args.batch_size
rank = gpu
dist.init_process_group(
backend='nccl',
init_method='env://',
world_size=args.world_size,
rank=rank
)
torch.manual_seed(0)
model_ft, video_datasets = load_model_and_dataset(args.dataset, args.model, args.phase_set)
model_ft = model_ft.eval() # important!
model_ft.cuda(gpu)
model_ft = DDP(model_ft, device_ids=[gpu])
# print(model_ft)
# Initialize the dataset and dataloader
samplers = {x: torch.utils.data.distributed.DistributedSampler(video_datasets[x],
num_replicas=args.world_size, rank=rank) for x in args.phase_set}
dataloaders = {x: DataLoader(video_datasets[x], batch_size=batch_size, shuffle=False,
num_workers=0, sampler=samplers[x], pin_memory=False) for x in args.phase_set}
print(rank, {x: 'Num of batches:{}'.format(len(dataloaders[x])) for x in args.phase_set})
if args.visualize:
plot_save_path = f"{proj_root}/visual_res/{args.save_label}"
os.makedirs(plot_save_path, exist_ok=True)
# res_buf = {'train': [], 'val': []}
for phase in args.phase_set:
res_buf = {'train': [], 'val': []}
for samples in dataloaders[phase]:
# x: 1x3x16x112x112; label: 1; output mask:
# 1x1x16x112x112; fidx_tensors: 1x16;
x, labels, seg_names, fidx_tensors = samples[:4]
x = x.cuda(gpu)
labels = labels.to(dtype=torch.long).cuda(gpu)
if args.dataset == 'sthsthv2':
action_label = samples[4]
y = model_ft(x)
lowest_probs, lowest_labels = torch.min(y, dim=1)
device = x.device
print(seg_names)
if args.vis_method in ['g', 'ig', 'blur_ig']:
if args.vis_method == 'g':
res = gradients(x, labels, model_ft, device, multiply_input=False, polarity='both')
elif args.vis_method == 'ig':
res = integrated_grad(x, labels, model_ft, device, steps=25, polarity='both')
elif args.vis_method == 'blur_ig':
res = blur_integrated_grad(x, labels, model_ft, device, steps=25, polarity='both')
heatmaps_np = res.numpy() # Nx1xTxHxW
elif args.vis_method in ['sg', 'sg2', 'sg_var']:
variant_dict = {'sg': None, 'sg2': 'square', 'sg_var': 'variance'}
variant = variant_dict[args.vis_method]
res = smooth_grad(x, labels, model_ft, device, nsamples=25, variant=variant)
heatmaps_np = res.numpy() # Nx1xTxHxW
elif args.vis_method in ['grad_cam', 'eb', 'score_cam']:
if args.model == 'r2p1d':
layer_name = ['layer4']
# layer_name = ['layer3']
elif args.model == 'v16l':
layer_name = ['pool5']
elif args.model == 'r50l':
layer_name = ['6']
elif args.model == 'tsm':
layer_name = ['layer4']
if args.vis_method == 'grad_cam':
res = grad_cam(x, labels, model_ft, args.model, device, layer_name=layer_name, norm_vis=True)
elif args.vis_method == 'eb':
res = excitation_bp(x, labels, model_ft, args.model, device, layer_name=layer_name, norm_vis=True)
elif args.vis_method == 'score_cam':
res = score_cam(x, labels, model_ft, args.model, device, layer_name=layer_name, norm_vis=True)
heatmaps_np = res.numpy() # Nx1xTxHxW
elif args.vis_method == 'gbp':
res = guided_bp(x, labels, model_ft)
heatmaps_np = res.numpy()
elif args.vis_method == 'la':
res = linear_appr(x, labels, model_ft)
heatmaps_np = res.numpy()
elif args.vis_method == 'xrai':
res = xrai(x, labels, model_ft, device)
heatmaps_np = res.numpy()
elif args.vis_method == 'perturb':
sigma = 11 if x.shape[-1] == 112 else 23
if args.lowest_label:
res = video_perturbation(
model_ft, x, lowest_labels, areas=args.areas, sigma=sigma,
max_iter=args.perturb_niter, variant="preserve",
gpu_id=gpu, print_iter=200, perturb_type=args.perturb_type,
with_core=args.perturb_withcore,
core_num_keyframe=args.perturb_num_keyframe,
core_spatial_size=args.perturb_spatial_size,
core_shape=args.perturb_core_shape)[0]
else:
res = video_perturbation(
model_ft, x, labels, areas=args.areas, sigma=sigma,
max_iter=args.perturb_niter, variant="preserve",
gpu_id=gpu, print_iter=200, perturb_type=args.perturb_type,
with_core=args.perturb_withcore,
core_num_keyframe=args.perturb_num_keyframe,
core_spatial_size=args.perturb_spatial_size,
core_shape=args.perturb_core_shape)[0]
# print(res.shape)
heatmaps_np = res.numpy() # NxAx1xTxHxW
# print(heatmaps_np.shape)
for bidx in range(len(seg_names)):
seg_name = copy.deepcopy(seg_names[bidx].split("/")[-1])
heatmap = heatmaps_np[bidx].astype('float16')
fidxs = copy.deepcopy(fidx_tensors[bidx].detach().cpu().numpy())
fidxs = fidxs.astype('uint16')
res_buf[phase].append({"video_name": seg_name, "mask": heatmap, "fidx": fidxs})
if args.visualize:
inp_np = voxel_tensor_to_np(x[bidx].detach().cpu()) # 3 x num_f x 224 224
plot_save_name = seg_name + '.jpg'
if args.dataset == 'sthsthv2':
plot_save_name = plot_save_name.replace('.jpg', f'_{action_label[bidx]}.jpg')
print(plot_save_name)
if args.vis_method == 'perturb':
merged_fig, _ = vis_perturb_res(args.dataset, args.model, seg_name,
heatmaps_np[bidx], frame_index=fidxs, white_bg=False)
Image.fromarray(merged_fig).save(os.path.join(args.plot_save_path, plot_save_name))
else:
if args.vis_method == 'grad_cam' or args.vis_method == 'eb' or args.vis_method == 'score_cam':
heatmap_np = overlap_maps_on_voxel_np(inp_np, heatmaps_np[bidx,0])
else:
heatmap_np = heatmaps_np[bidx].repeat(3, axis=0) # 3 x num_f x 224 224
plot_voxel_np(inp_np, heatmap_np, title=seg_name,
save_path=os.path.join(args.plot_save_path, plot_save_name) )
res_save_name = f'{args.save_label}_gpu{gpu}_{phase}.pt'
torch.save(res_buf, join(args.res_save_path, res_save_name))
print(f'GPU:{gpu}, Phase:{phase} saved.', res_save_name)
# res_save_name = f'{args.save_label}_gpu{gpu}.pt'
# torch.save(res_buf, join(args.res_save_path, res_save_name))
# print(f'GPU:{gpu} saved', res_save_name)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
# parser.add_argument("--testlist_idx", type=int, default=2, choices=[1, 2])
# parser.add_argument("--num_f", type=int, default=16, choices=[8, 16])
# parser.add_argument("--long_range", action='store_true')
parser.add_argument("--dataset", type=str, choices=['epic', 'ucf101', 'cat_ucf', 'sthsthv2'])
parser.add_argument("--model", type=str, choices=['r2p1d', 'v16l', 'r50l', 'tsm'])
parser.add_argument("--vis_method", type=str,
choices=['g', 'ig', 'sg', 'sg2', 'grad_cam', 'perturb', 'eb',
'gbp', 'la', 'blur_ig', 'score_cam', 'xrai'])
parser.add_argument("--only_test", action="store_true")
parser.add_argument("--only_train", action="store_true")
parser.add_argument("--num_gpu", type=int, default=-1)
parser.add_argument("--visualize", action='store_true')
parser.add_argument("--extra_label", type=str, default="")
parser.add_argument("--retrain_type", type=str, default="full", choices=["full", "half"])
parser.add_argument("--lowest_label", action='store_true')
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--perturb_niter", type=int, default=1000)
parser.add_argument("--perturb_withcore", action='store_true')
parser.add_argument("--perturb_type", type=str, default='blur')
parser.add_argument("--perturb_num_keyframe", type=int, default=8)
parser.add_argument("--perturb_core_shape", type=str, default='ellipsoid', choices=["ellipsoid", "cylinder"])
parser.add_argument("--perturb_spatial_size", type=int, default=11)
parser.add_argument("--master_addr", type=str, default="127.0.1.1")
parser.add_argument("--master_port", type=str, default="29501")
args = parser.parse_args()
assert args.only_test & args.only_train == False, "only_test and only_train cannot be true together!"
# args.phase_set = ["val"] if args.only_test else ["val", "train"]
# args.phase_set = ["train"] if args.only_train else ["val", "train"]
args.phase_set = ["val", "train"]
if args.only_test:
args.phase_set = ["val"]
if args.only_train:
args.phase_set = ["train"]
if args.dataset == 'cat_ucf':
args.phase_set = ["val"]
print(args.phase_set)
# Set path to save masks generated by perturbations
save_label = f"{args.dataset}_{args.model}_{args.vis_method}_{args.retrain_type}"
if args.lowest_label:
save_label = save_label + "_lowest"
if args.perturb_withcore:
save_label = save_label + "_core" + f"{args.perturb_num_keyframe}"
if args.perturb_type == 'fade':
save_label = save_label + "_fade"
if args.perturb_core_shape == 'cylinder':
save_label = save_label + "_cylinder"
if args.extra_label != "":
save_label = save_label + f"_{args.extra_label}"
args.save_label = save_label
print(save_label)
res_save_path = f"{proj_root}/exe_res"
os.makedirs(res_save_path, exist_ok=True)
args.res_save_path = res_save_path
if args.visualize:
plot_save_path = f"{proj_root}/visual_res/{save_label}"
os.makedirs(plot_save_path, exist_ok=True)
args.plot_save_path = plot_save_path
if args.vis_method == 'perturb':
args.areas = [0.05, 0.1, 0.15, 0.5]
if args.dataset == 'cat_ucf':
args.areas = [0.02, 0.05, 0.1]
if args.dataset == 'sthsthv2' and args.model == 'tsm':
args.areas = [0.05, 0.1, 0.15, 0.3]
multi_gpu = True
if args.num_gpu == -1:
num_devices = torch.cuda.device_count()
else:
num_devices = args.num_gpu
assert num_devices <= torch.cuda.device_count() and num_devices >= 1, \
f"Set number of GPUs: {args.num_gpu}, but only have {torch.cuda.device_count()} GPUs."
args.world_size = num_devices
# os.environ['MASTER_ADDR'] = '127.0.1.2'
# os.environ['MASTER_PORT'] = '29502'
os.environ['MASTER_ADDR'] = args.master_addr
os.environ['MASTER_PORT'] = args.master_port
print(f'Use {num_devices} GPUs.')
mp.spawn(main_worker, nprocs=num_devices, args=(args,))
print('*** This is the end of the multiprocessing ***')
all_res = {'train': [], 'val': []}
for phase in args.phase_set:
for device_id in range(num_devices):
res_save_name = f'{args.save_label}_gpu{device_id}_{phase}.pt'
res_buf = torch.load(join(args.res_save_path, res_save_name))
all_res[phase] += res_buf[phase]
phase_label = ""
if args.only_test:
phase_label = "_test"
if args.only_train:
phase_label = "_train"
res_save_name = f'{args.save_label}{phase_label}.pt'
torch.save(all_res, join(args.res_save_path, res_save_name))
print(f'Saved all samples as {res_save_name}.')
for phase in args.phase_set:
for device_id in range(num_devices):
res_save_name = f'{args.save_label}_gpu{device_id}_{phase}.pt'
os.remove(join(args.res_save_path, res_save_name))
print(f'Deleted all samples saved by each GPU.')