Skip to content

Latest commit

 

History

History
37 lines (29 loc) · 1.25 KB

README.md

File metadata and controls

37 lines (29 loc) · 1.25 KB

We use Swin Transformer code as the backbone, which Microsoft have their copyright. In the "models" folder, we build the code to support Patterns based Transformer.

environment setup

imagenet dataset format imagenet ├── train │ ├── class1 │ │ ├── img1.jpeg │ │ ├── img2.jpeg │ │ └── ... │ ├── class2 │ │ ├── img3.jpeg │ │ └── ... │ └── ... └── val ├── class1 │ ├── img4.jpeg │ ├── img5.jpeg │ └── ... ├── class2 │ ├── img6.jpeg │ └── ... └── ...

pip install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2 pip install timm==0.4.12
pip install opencv-python==4.4.0.46 termcolor==1.1.0 yacs==0.1.8

train script python3.8 -m torch.distributed.launch --nproc_per_node 1 --master_port 12345 main.py --cfg configs/pat/pat_tiny_patch4_224.yaml --data-path imagenet_path --batch-size 128 --accumulation-steps 8

throughput test script python3.8 -m torch.distributed.launch --nproc_per_node 1 --master_port 12345 main.py --cfg configs/pat/pat_tiny_patch4_224.yaml --data-path imagenet_path --batch-size 128 --throughput