-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
108 lines (73 loc) · 3.45 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import yaml
from models.generator import GeneratorBuilder
from models.discriminator import DiscriminatorBuilder
from models.spatial_prediction import SpatialPredictorBuilder
from models.content_predictor import ContentPredictorBuilder
from coord_handler import CoordHandler
from patch_handler import PatchHandler
from logger import Logger
from trainer import Trainer
import torchvision
import torchvision.datasets as dataset
import torch
def precompute_parameters(config):
full_image_size = config["data_params"]["full_image_size"]
micro_patch_size = config["data_params"]["micro_patch_size"]
macro_patch_size = config["data_params"]["macro_patch_size"]
# Let NxM micro matches to compose a macro patch,
# `ratio_macro_to_micro` is N or M
ratio_macro_to_micro = [
macro_patch_size[0] // micro_patch_size[0],
macro_patch_size[1] // micro_patch_size[1],
]
num_micro_compose_macro = ratio_macro_to_micro[0] * ratio_macro_to_micro[1]
# Let NxM micro matches to compose a full image,
# `ratio_full_to_micro` is N or M
ratio_full_to_micro = [
full_image_size[0] // micro_patch_size[0],
full_image_size[1] // micro_patch_size[1],
]
num_micro_compose_full = ratio_full_to_micro[0] * ratio_full_to_micro[1]
config["data_params"]["ratio_macro_to_micro"] = ratio_macro_to_micro
config["data_params"]["ratio_full_to_micro"] = ratio_full_to_micro
config["data_params"]["num_micro_compose_macro"] = num_micro_compose_macro
config["data_params"]["num_micro_compose_full"] = num_micro_compose_full
def load_dataset(config):
# data_path = 'mnist/'
#
# train_dataset = dataset.MNIST(root=data_path, train=True, download=True, transform=torchvision.transforms.Compose([torchvision.transforms.Resize((config["data_params"]["full_image_size"][0],config["data_params"]["full_image_size"][1])), torchvision.transforms.ToTensor()]))
data_path = 'celeb_data/'
train_dataset = torchvision.datasets.ImageFolder(
root=data_path,
transform=torchvision.transforms.Compose([torchvision.transforms.Resize((config["data_params"]["full_image_size"][0],config["data_params"]["full_image_size"][1])), torchvision.transforms.ToTensor()])
)
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=config['train_params']['batch_size'],
num_workers=0,
shuffle=True
)
return train_loader
with open('./configs/CelebA_64x64_N2M2S32.yaml') as f:
config = yaml.load(f)
micro_size = config["data_params"]['micro_patch_size']
macro_size = config["data_params"]['macro_patch_size']
full_size = config["data_params"]['full_image_size']
assert macro_size[0] % micro_size[0] == 0
assert macro_size[1] % micro_size[1] == 0
assert full_size[0] % micro_size[0] == 0
assert full_size[1] % micro_size[1] == 0
# Pre-compute some frequently used parameters
precompute_parameters(config)
# Create model builders
coord_handler = CoordHandler(config)
patch_handler = PatchHandler(config)
d_builder = DiscriminatorBuilder(config)
g_builder = GeneratorBuilder(config)
cp_builder = SpatialPredictorBuilder(config)
zp_builder = ContentPredictorBuilder(config)
real_images = load_dataset(config)
## Create controllers
logger = Logger(config, patch_handler)
trainer = Trainer(config, g_builder, d_builder, cp_builder, zp_builder, coord_handler, patch_handler)
trainer.train(logger, real_images)