forked from udacity/CarND-Advanced-Lane-Lines
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaverager.py
37 lines (27 loc) · 917 Bytes
/
averager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import numpy as np
class Averager:
def __init__(self, length, height):
self._avg = np.empty(shape=(height, length))
self._counter = 0
def push(self, vec):
self._avg[:,self._index(self._counter)] = vec
self._counter += 1
def latest(self):
return self._avg[:,self._index(self._counter - 1)]
def mean(self):
idx = min(self._counter, self._avg.shape[-1])
return np.mean(self._avg[:,:idx], axis=1)
def _index(self, n):
return n % self._avg.shape[-1]
if __name__ == '__main__':
a = Averager(4, 2)
a.push([1, 3])
assert((a.latest() == a.mean()).all())
assert((a.latest() == [1, 3]).all())
a.push([3, 1])
assert((a.latest() == [3, 1]).all())
assert((a.mean() == [2, 2]).all())
for i in range(6):
a.push([1, 4])
assert((a.latest() == [1, 4]).all())
assert((a.mean() == [1, 4]).all())