-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrack.py
227 lines (183 loc) · 7.58 KB
/
track.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
Created on Aug 10 16:50:05 2024
@author: STRH
Code for running SORT using YOLOv5 on image or video dataset.
'''
# import libraries
import cv2
import os
import sys
import time
import torch
import random
import argparse
import numpy as np
import os.path as osp
from pathlib import Path
# import tracker
from sort import Sort
from util import VisulizeTrack
sys.path.append('/home/setare/Vision/yolov5')
# import from yolov5
from yolov5.models.common import DetectMultiBackend
from yolov5.utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from yolov5.utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr,
increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
from yolov5.utils.plots import Annotator, colors, save_one_box
from yolov5.utils.torch_utils import select_device, smart_inference_mode
# constant val
IMAGE_EXT = [".jpg", ".jpeg", ".webp", ".bmp", ".png"]
# selct device
device = select_device('0')
half = device.type != 'cpu' # half precision only supported on CUDA
imgsz=640
t0, t1, t2, t3 = 0,0,0,0
# parse arguments
def parse_args():
parser = argparse.ArgumentParser(description="SORT Inference to Evaluation")
parser.add_argument('--weights', type=str, required=True, help="Path to detection model weights")
parser.add_argument('--input_type', type=str, required=True, help="Input type: image or video")
parser.add_argument('--input_path', type=str, required=True, help="Path to input images folder or video file")
parser.add_argument('--save_mot', type=str, required=True, help="save results in mot format")
parser.add_argument('--save_path', type=str, required=False, help="path to folder for saving results")
parser.add_argument('--gt', type=str, required=False, help="path to gt.txt file")
parser.add_argument('--save_video', type=str, required=True, help="if you want to save the tracking result visualization set it True")
return parser.parse_args()
# parse args
args = parse_args()
if args.gt:
gt_path = args.gt
else:
# loading model using torch.hub
model = torch.hub.load('ultralytics/yolov5', 'custom', path= args.weights, force_reload= False)
model.float()
model.eval()
# get images list when input-type is image
def get_image_list(path):
image_names = []
for maindir, subdir, file_name_list in os.walk(path):
for filename in file_name_list:
apath = osp.join(maindir, filename)
ext = osp.splitext(apath)[1]
if ext in IMAGE_EXT:
image_names.append(apath)
return image_names
def read_gt(file_path):
# Read and parse the file
with open(file_path, 'r') as file:
gt_lines = file.readlines()
# Initialize a dictionary to hold lists of boxes for each frame
frames_boxes = {}
# Process each line in the file
for line in gt_lines:
# Split the line by commas
parts = line.strip().split(',')
# Extract relevant fields
frame_id = int(parts[0])
object_id = int(parts[1])
x = float(parts[2])
y = float(parts[3])
width = float(parts[4])
height = float(parts[5])
class_id = int(parts[7])
visibility = float(parts[8])
# Create a bounding box tuple
bbox = [x, y, x + width, y + height, 1, class_id]
# Add the bounding box to the corresponding frame's list
if frame_id not in frames_boxes:
frames_boxes[frame_id] = []
frames_boxes[frame_id].append(bbox)
# Let's print the first few frames to see the result
frames_boxes_sorted = dict(sorted(frames_boxes.items()))
return frames_boxes_sorted
def main():
# initialize the tracker
tracker = Sort(max_age=1, min_hits=3, iou_threshold=0.3)
visualize = VisulizeTrack()
# get images/video pathes
file = args.input_type
if file.lower() == "image":
img_path = args.input_path
if osp.isdir(img_path):
files = get_image_list(img_path)
files.sort()
det_time = []
track_time = []
loop_time = []
results = []
frame_id = 1
first_image = cv2.imread(files[frame_id-1])
height, width, _ = first_image.shape
if args.save_video.lower() == "true":
Video=cv2.VideoWriter(args.save_path + f"/{args.input_path.split('/')[-2]}_draw.mp4",cv2.VideoWriter_fourcc(*'mp4v'),30,(width, height))
for path in files:
img = cv2.imread(path)
t1 = time.time()
if args.gt:
dets = read_gt(gt_path)[frame_id]
else:
# using torch.hub
preds = model(img)
# get dets in xyxy format
dets = preds.xyxy[0].cpu().numpy() # if you are using torch.hub
t2 = time.time()
if len(dets) > 0:
tracks = tracker.update(np.array(dets))
else:
dets = np.empty((0, 6)) # empty N X (x, y, x, y, conf, cls)
tracks = tracker.update(dets) # --> M X (x, y, x, y, id, conf, cls, ind)
t3 = time.time()
# print(dets, tracks)
for track in tracks:
x1, y1, x2, y2, track_id = track
w, h = x2 - x1, y2 - y1
conf = 1
results.append([frame_id, track_id, x1, y1, w, h, conf, -1, -1, -1])
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0,255,255), 3)
cv2.putText(img,
f'id: {int(track_id)}, conf: {conf:.2f}',
(int(x1), int(y1)), cv2.FONT_HERSHEY_SIMPLEX, 1,
(0,255,255))
if args.save_video.lower() == "true":
Video.write(cv2.resize(img,(width, height)))
# break on pressing q or space
cv2.imshow('BoxMOT detection', img)
key = cv2.waitKey(1) & 0xFF
if key == ord(' ') or key == ord('q'):
break
frame_id += 1
det_time.append(t2-t1)
track_time.append(t3-t2)
loop_time.append(t3-t1)
if args.save_video.lower() == "true":
Video.release()
cv2.destroyAllWindows()
avg_time_det = sum(det_time)/len(det_time)
avg_time_track = sum(track_time)/len(track_time)
avg_total_time = sum(loop_time)/len(loop_time)
fps_det = 1/avg_time_det
fps_track = 1/avg_time_track
fps_total = 1/avg_total_time
print(f"Average Inference Time for Detection: {avg_time_det}, FPS: {fps_det}")
print(f"Average Inference Time for Tracking: {avg_time_track}, FPS: {fps_track}")
print(f"Total Average Inference Time: {avg_total_time}, FPS: {fps_total}")
else:
raise ValueError("Not Implemented, choose image!")
if args.save_mot.lower()=="true":
save = True
else:
save = False
if save:
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
print("Save path created!")
output_file = args.save_path + f"/{args.input_path.split('/')[-2]}.txt"
with open(output_file, 'w') as f:
for result in results:
line = ",".join(map(str, result))
f.write(line + "\n")
print(f"Tracking results saved to {output_file}")
if __name__ == "__main__":
main()