-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.py
205 lines (150 loc) · 7.28 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import os
import sys
# import yaml sys
import argparse
import copy
import numpy as np
import pandas as pd
import pytorch_lightning as pl
from pytorch_lightning.loggers.tensorboard import TensorBoardLogger
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.callbacks import TQDMProgressBar
import modules
import datasets
from utils import parse_args, save_config, find_best_epoch, process_results
class MetricsCallback(Callback):
"""PyTorch Lightning metric callback."""
def __init__(self):
super().__init__()
self.metrics = []
self.all_keys = []
def on_validation_epoch_end(self, trainer, pl_module):
each_me = {}
for k,v in trainer.callback_metrics.items():
each_me[k] = v.item()
if k not in self.all_keys:
self.all_keys.append(k)
self.metrics.append(each_me)
def get_all(self):
all_metrics = {}
for k in self.all_keys:
all_metrics[k] = []
for m in self.metrics[1:]:
for k in self.all_keys:
v = m[k] if k in m else np.nan
all_metrics[k].append(v)
return all_metrics
def cli_main():
argv = sys.argv[1:]
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--config", default=None, help="where to load YAML configuration", metavar="FILE")
parser.add_argument('--exp_name', type=str, default='test', help='experiment name')
parser.add_argument('--exp_dir', type=str, default='../experiments/', help='experiment output directory')
parser.add_argument('--path_db', type=str, default='../dbs', help='experiment database path')
parser.add_argument('--seed', type=int, default=None, help='random seed')
parser.add_argument('--resume_training', action='store_true', help='resume training from checkpoint training')
parser.add_argument('--model', type=str, default='CNN_VAE', help='self supervised training method')
parser.add_argument('--dataset', type=str, default='SVHNSupDataModule', help='dataset to use for training')
parser.add_argument('--ckpt_period', type=int, default=3, help='save checkpoints every')
parser.add_argument('--checkpoint', type=str, default='', help='model checkpoint for resuming training or finetuning')
parser.add_argument('--finetune', type=int, default=0, help='0 = no finetuning')
parser.add_argument('--freeze_pretrained', type=int, default=0, help='0 = no freezing')
parser.add_argument('--early_stopping', type=int, default=0, help='0 = no early stopping')
parser.add_argument('--refresh_rate', type=int, default=10, help='progress bar refresh rate')
parser.add_argument('--es_patience', type=int, default=40, help='early stopping patience')
args = parse_args(parser, argv)
if args.seed is not None:
pl.seed_everything(args.seed)
# trainer args
parser = pl.Trainer.add_argparse_args(parser)
# model args
model_type = vars(modules)[args.model]
parser = model_type.add_model_specific_args(parser)
# dataset args
dataset_type = vars(datasets)[args.dataset]
parser = dataset_type.add_dataset_specific_args(parser)
args = parse_args(parser, argv)
# initializing the dataset and model
datamodule = dataset_type(**args.__dict__)
model = model_type(**args.__dict__)
print(model.hparams)
fit_kwargs = {}
# save config
if args.resume_training:
ckpt = list(filter(lambda x: '.ckpt' in x, os.listdir(args.exp_dir)))[-1]
ckpt = os.path.join(args.exp_dir, ckpt)
print('resuming from checkpoint', ckpt)
fit_kwargs['ckpt_path'] = ckpt
else:
if (args.checkpoint != '' and args.finetune == 1) or (args.checkpoint != '' and '.ckpt' not in args.checkpoint and '.tar' not in args.checkpoint):
ckpt = args.checkpoint
if '.ckpt' not in ckpt:
ckpt = list(filter(lambda x: '.ckpt' in x, os.listdir(ckpt)))
ckpts = [c for c in ckpt if 'epoch' in c]
if len(ckpts)>0:
ckpt = ckpts[0]
else:
ckpt = ckpt[0]
ckpt = os.path.join(args.checkpoint, ckpt)
model.load_finetune_weights(ckpt)
elif args.checkpoint != '':
ckpt = args.checkpoint
model.load_backbone_weights(ckpt)
os.makedirs(args.exp_dir, exist_ok=True)
os.makedirs(args.path_db, exist_ok=True)
save_config(args.__dict__, os.path.join(args.exp_dir, 'config.yaml'))
if args.freeze_pretrained == 1:
model.freeze_pretrained()
# training
logger = TensorBoardLogger(args.exp_dir, default_hp_metric=False)
model_checkpoint = pl.callbacks.ModelCheckpoint(dirpath=args.exp_dir, save_top_k=1, mode='max', monitor='metrics/val_acc', every_n_epochs=args.ckpt_period, save_last=True)
callbacks = [model_checkpoint]
if args.early_stopping!=0:
early_stopping = pl.callbacks.EarlyStopping(monitor='metrics/val_acc', mode='max', patience=args.es_patience, stopping_threshold=0.99, strict=False) #0.99
callbacks.append(early_stopping)
callbacks.append(TQDMProgressBar(refresh_rate=args.refresh_rate))
metrics_callback = MetricsCallback()
callbacks.append(metrics_callback)
trainer = pl.Trainer.from_argparse_args(args, logger=logger, callbacks=callbacks)
trainer.fit(model, datamodule, **fit_kwargs)
# testing
best_model = model if model_checkpoint.best_model_path == "" else model_type.load_from_checkpoint(checkpoint_path=model_checkpoint.best_model_path)
trainer.test(model=best_model, datamodule=datamodule)
train_result = best_model.test_results
global_avg, per_task, per_task_avg = process_results(train_result, args.task)
metrics = metrics_callback.get_all()
best_val_acc = np.nanmax(metrics['metrics/val_acc'] + [0])
best_epoch = (np.nanargmax(metrics['metrics/val_acc'] + [0])+1) * args.ckpt_period
# saving results
logger.log_hyperparams(best_model.hparams, metrics={'hp/'+k : v for k, v in global_avg.items()})
logger.save()
df = pd.DataFrame()
output_dict = {
'0_train': 0,
'0_exp_name': args.exp_name,
'0_exp_dir': args.exp_dir,
'0_model': args.model,
'0_seed': args.seed,
'0_dataset': args.dataset,
'0_checkpoint': args.checkpoint,
'0_finetune': args.finetune,
'0_freeze_pretrained': args.freeze_pretrained,
'1_task': args.task,
'1_n_samples': args.n_samples,
'2_val_acc': best_val_acc,
'2_best_epoch': best_epoch,
'3_max_epochs': args.max_epochs,
'3_backbone': args.backbone,
'3_batch_size': args.batch_size,
'3_lr': args.lr,
'3_wd': args.wd,
}
output_dict.update({'2_'+k:v for k,v in global_avg.items()})
output_dict.update({'5_'+k:v for k,v in per_task_avg.items()})
results_save_path = os.path.join(args.exp_dir, 'results.npy')
np.save(results_save_path, {'global_avg': global_avg, 'per_task_avg': per_task_avg, 'per_task': per_task, 'metrics': metrics})
df = df.append(output_dict, ignore_index=True)
df.to_csv(os.path.join(args.path_db, args.exp_name + '_db.csv'))
if __name__ == '__main__':
print(os.getpid())
cli_main()