-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathetape_3.py
107 lines (82 loc) · 2.47 KB
/
etape_3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#!/usr/bin/env python3.7
import os
import re
import json
import nltk
from nltk.stem.snowball import FrenchStemmer
import pandas as pd
import matplotlib.pyplot as plt
import statistics
from collections import OrderedDict
from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np
from sklearn import manifold
"""
title, livre, fable sont des str
corpus = { livre-1: {title: fable,
title1: fable1},
livre-2: ...
}
"""
def get_corpus():
"""Le corpus est le fichier corpus.json"""
fichier = "corpus.json"
with open(fichier) as f:
data = f.read()
f.close()
return json.loads(data)
def get_livre_assemblage(corpus):
"""Regroupe les fables par livre
livres = {livre1: str(des fables de 1),
livre2: ....
}
"""
livres = {}
for livre, val in corpus.items():
if not livre in livres:
livres[livre] = ""
for title, fable in val.items():
livres[livre] += fable + "\n"
return livres
def get_bigram(corpus):
"""Bigrammes de NLTK"""
livres = get_livre_assemblage(corpus)
tokenizer = nltk.RegexpTokenizer(r'\w+')
print(f'Bigrammes de NLTK:\n')
for livre, text in livres.items():
tokens = tokenizer.tokenize(text.lower())
bigr = list(nltk.bigrams(tokens))
print(f'{livre}: {bigr[:20]}\n')
def get_tf_idf(corpus, sw):
"""Term-Frequency - Inverse Document Frequency"""
livres = get_livre_assemblage(corpus)
tokenizer = nltk.RegexpTokenizer(r'\w+')
tf_idf, token_dict = {}, {}
print(f'\nTF-IDF:\n')
tfidf = TfidfVectorizer(tokenizer=tokenize, stop_words=sw)
for livre, text in livres.items():
# Suppression des ponctuations
unpunkt = tokenizer.tokenize(text.lower())
tf_idf[livre] = tfidf.fit_transform(unpunkt)
return tf_idf
def stem_tokens(tokens, stemmer):
stemmed = []
for item in tokens:
stemmed.append(stemmer.stem(item))
return stemmed
def tokenize(text):
stemmer = FrenchStemmer()
tokens = nltk.word_tokenize(text)
stems = stem_tokens(tokens, stemmer)
return stems
def t_SNE_vizualisation(tf_idf):
"""Vizualisation t-SNE"""
print('Cette fonction est secrète')
def main():
corpus = get_corpus()
sw = nltk.corpus.stopwords.words('french')
# #get_bigram(corpus)
tf_idf = get_tf_idf(corpus, sw)
t_SNE_vizualisation(tf_idf)
if __name__ == "__main__":
main()