-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEffectiveGaussianSource.cpp
604 lines (544 loc) · 24.5 KB
/
EffectiveGaussianSource.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
#include <iostream>
#include <stdio.h>
#include <string.h>
//#include <omp.h>
#include <complex>
#include "CATS.h"
#include "CATSconstants.h"
#include "CATStools.h"
#include "DLM_Potentials.h"
#include "DLM_Source.h"
#include "DLM_Fitters.h"
#include "DLM_CppTools.h"
#include "DLM_CkDecomposition.h"
#include "CommonAnaFunctions.h"
#include "DLM_Random.h"
#include "DLM_Bessel.h"
#include "DLM_Integration.h"
#include "DLM_WfModel.h"
#include "DLM_Histo.h"
#include "DLM_CkModels.h"
#include "DLM_HistoAnalysis.h"
#include "TGraph.h"
#include "TFile.h"
#include "TCanvas.h"
#include "TH1F.h"
#include "TH2F.h"
#include "TNtuple.h"
#include "TRandom3.h"
#include "TF1.h"
#include "TNtuple.h"
#include "TStyle.h"
#include "TLegend.h"
#include "TPaveText.h"
#include "TLorentzVector.h"
#include "TVector3.h"
using namespace std;
void EffectiveGaussianXiCock(){
const double CoreSize = 1.2;
//DLM_CleverMcLevyResoTM* MagicSource = new DLM_CleverMcLevyResoTM ();
DLM_CleverMcLevyResoTM MagicSource;
//DO NOT CHANGE !!! Sets up numerical bullshit, tuned for a Gaussian source
MagicSource.InitStability(1,2-1e-6,2+1e-6);
MagicSource.InitScale(38,0.15,2.0);
MagicSource.InitRad(257*2,0,64);
MagicSource.InitType(2);
///////////////////
//for p-Xi, set up the amount of secondaries
//first for the protons (64.22%)
MagicSource.SetUpReso(0,0.6422);
//than for the Xis, here its 0% (we have ONLY primordials)
MagicSource.SetUpReso(1,0.0);
//the cut off scale in k*, for which the angular distributions from EPOS
//are evaluated. 200 MeV works okay, you can go up to 300 MeV for systematic checks
const double k_CutOff = 200;
//to be used for the NTuple later on
Float_t k_D;
Float_t fP1;
Float_t fP2;
Float_t fM1;
Float_t fM2;
Float_t Tau1;
Float_t Tau2;
Float_t AngleRcP1;
Float_t AngleRcP2;
Float_t AngleP1P2;
//random generator dimi style. The input is incompatible with the ROOT random generator,
//do not mix and match, do not ask me how I know this. Ask Bernie.
//11 is the seed, you can change that to you favorite number
DLM_Random RanGen(11);
//dummies to save random shit
double RanVal1;
double RanVal2;
double RanVal3;
//open the magic file from dimi with the angular distributions.
TFile* F_EposDisto_pReso_Xim = new TFile("/mnt/Ubuntu_Data/CernBox/Sync/CatsFiles/Source/EposAngularDist/EposDisto_pReso_Xim.root");
//set up the ntuple, do not change anything unless told so by dimi
TNtuple* T_EposDisto_pReso_Xim = (TNtuple*)F_EposDisto_pReso_Xim->Get("InfoTuple_ClosePairs");
unsigned N_EposDisto_pReso_Xim = T_EposDisto_pReso_Xim->GetEntries();
T_EposDisto_pReso_Xim->SetBranchAddress("k_D",&k_D);
T_EposDisto_pReso_Xim->SetBranchAddress("P1",&fP1);
T_EposDisto_pReso_Xim->SetBranchAddress("P2",&fP2);
T_EposDisto_pReso_Xim->SetBranchAddress("M1",&fM1);
T_EposDisto_pReso_Xim->SetBranchAddress("M2",&fM2);
T_EposDisto_pReso_Xim->SetBranchAddress("Tau1",&Tau1);
T_EposDisto_pReso_Xim->SetBranchAddress("Tau2",&Tau2);
T_EposDisto_pReso_Xim->SetBranchAddress("AngleRcP1",&AngleRcP1);
T_EposDisto_pReso_Xim->SetBranchAddress("AngleRcP2",&AngleRcP2);
T_EposDisto_pReso_Xim->SetBranchAddress("AngleP1P2",&AngleP1P2);
//iterate over the ntuple
for(unsigned uEntry=0; uEntry<N_EposDisto_pReso_Xim; uEntry++){
//get each entry
T_EposDisto_pReso_Xim->GetEntry(uEntry);
//disregard the entry of you are outside the desired k*
if(k_D>k_CutOff) continue;
//overwrite the value for the lifetime. This is computed from the
//stat. hadronization model (Vale) or thermal fist (Max)
//this is the value for the secondary protons
Tau1 = 1.65;
//for primoridials (the Xis) we put 0
Tau2 = 0;
//put in the average mass of the resonances (again from SHM or TF)
//this is the value for protons
fM1 = 1362;
//generate a random path length for the propagation of the resonances
//nothing to change!
RanVal1 = RanGen.Exponential(fM1/(fP1*Tau1));
//adds a single entry into the PDF for the angular distribution to be used
MagicSource.AddBGT_RP(RanVal1,cos(AngleRcP1));
}
delete F_EposDisto_pReso_Xim;
//if you have resonances contributing to both particles, we need to repeat the above procedure
//for the prim-reso (AddBGT_PR) and reso-reso (AddBGT_RR) cases
const unsigned NumSourceBins = 128;
const double rMin = 0;
const double rMax = 16;
TFile* fOutput = new TFile("fOutput.root","recreate");
TH1F* hSource = new TH1F("hSource","hSource",NumSourceBins,rMin,rMax);
//fill the histo fro the source
for(unsigned uBin=0; uBin<NumSourceBins; uBin++){
//get the x-axis (r value) of the current bin
double xaxis = hSource->GetBinCenter(uBin+1);
//an array for the parameters, [0] is source size, [1] is == 2 (for a Gaussian)
double parameters[2];
parameters[0] = CoreSize;
parameters[1] = 2.0;
double SourceValue = MagicSource.RootEval(&xaxis, parameters);
hSource->SetBinContent(uBin+1,SourceValue);
//infinite errors for now
hSource->SetBinError(uBin+1,1000.);
}
//idea: fit the source distribution only in a range around its peak
//to do this: silly idea: put very large uncertainties in the bins outside of this range
//we can get this range automatically, by evaluating the central (median) integral of the source distribution
//with this set up, we fit the 68% most central yield of the source distribution
double lowerlimit;
double upperlimit;
GetCentralInterval(*hSource, 0.84, lowerlimit, upperlimit, true);
unsigned lowerbin = hSource->FindBin(lowerlimit);
unsigned upperbin = hSource->FindBin(upperlimit);
for(unsigned uBin=lowerbin; uBin<=upperbin; uBin++){
hSource->SetBinError(uBin+1,0.01);
}
printf("Core size of %.3f fm\n",CoreSize);
printf("The fit will be performed in the range [%.2f, %.2f] fm\n",lowerlimit,upperlimit);
//fyi, GaussSourceTF1 is in DLM_Source.h if you want to check it out.
TF1* fSource = new TF1("fSource",GaussSourceTF1,rMin,rMax,1);
fSource->SetParameter(0,CoreSize);
fSource->SetParLimits(0,CoreSize*0.5,CoreSize*2.0);
hSource->Fit(fSource,"S, N, R, M");
printf("The effective Gaussian size is %.3f +/- %.3f fm\n",fSource->GetParameter(0),fSource->GetParError(0));
//get rid of weird plotting
for(unsigned uBin=0; uBin<NumSourceBins; uBin++){
hSource->SetBinError(uBin+1,0.01);
}
hSource->Write();
fSource->Write();
delete hSource;
delete fSource;
delete fOutput;
}
void EffectiveGaussianpAL(){
//value taken from pp scaling (mT_scaling forlder)
const double CoreSize = 0.993257;
//DLM_CleverMcLevyResoTM* MagicSource = new DLM_CleverMcLevyResoTM ();
DLM_CleverMcLevyResoTM MagicSource;
//DO NOT CHANGE !!! Sets up numerical bullshit, tuned for a Gaussian source
MagicSource.InitStability(1,2-1e-6,2+1e-6);
MagicSource.InitScale(38,0.15,2.0);
MagicSource.InitRad(257*2,0,64);
MagicSource.InitType(2);
///////////////////
//for p-antiL, set up the amount of secondaries
//first for the protons (64.22%)
MagicSource.SetUpReso(0,0.6422);
//than for the Lambdas, here its 64.38%
MagicSource.SetUpReso(1,0.6438);
//the cut off scale in k*, for which the angular distributions from EPOS
//are evaluated. 200 MeV works okay, you can go up to 300 MeV for systematic checks
const double k_CutOff = 200;
//to be used for the NTuple later on
Float_t k_D;
Float_t fP1;
Float_t fP2;
Float_t fM1;
Float_t fM2;
Float_t Tau1;
Float_t Tau2;
Float_t AngleRcP1;
Float_t AngleRcP2;
Float_t AngleP1P2;
//random generator dimi style. The input is incompatible with the ROOT random generator,
//do not mix and match, do not ask me how I know this. Ask Bernie.
//11 is the seed, you can change that to you favorite number
DLM_Random RanGen(11);
//dummies to save random shit
double RanVal1;
double RanVal2;
double RanVal3;
// 1. Reso p and primordials Lambdas
//open the magic file from dimi with the angular distributions.
TFile* F_EposDisto_pReso_Lam = new TFile("/Users/sartozza/cernbox/SourceStudies/EPOS_AngDistrib/EposDisto_pReso_Lam.root");
//set up the ntuple, do not change anything unless told so by dimi
TNtuple* T_EposDisto_pReso_Lam = (TNtuple*)F_EposDisto_pReso_Lam->Get("InfoTuple_ClosePairs");
unsigned N_EposDisto_pReso_Lam = T_EposDisto_pReso_Lam->GetEntries();
T_EposDisto_pReso_Lam->SetBranchAddress("k_D",&k_D);
T_EposDisto_pReso_Lam->SetBranchAddress("P1",&fP1);
T_EposDisto_pReso_Lam->SetBranchAddress("P2",&fP2);
T_EposDisto_pReso_Lam->SetBranchAddress("M1",&fM1);
T_EposDisto_pReso_Lam->SetBranchAddress("M2",&fM2);
T_EposDisto_pReso_Lam->SetBranchAddress("Tau1",&Tau1);
T_EposDisto_pReso_Lam->SetBranchAddress("Tau2",&Tau2);
T_EposDisto_pReso_Lam->SetBranchAddress("AngleRcP1",&AngleRcP1);
T_EposDisto_pReso_Lam->SetBranchAddress("AngleRcP2",&AngleRcP2);
T_EposDisto_pReso_Lam->SetBranchAddress("AngleP1P2",&AngleP1P2);
//iterate over the ntuple
for(unsigned uEntry=0; uEntry<N_EposDisto_pReso_Lam; uEntry++){
//get each entry
T_EposDisto_pReso_Lam->GetEntry(uEntry);
//disregard the entry of you are outside the desired k*
if(k_D>k_CutOff) continue;
//overwrite the value for the lifetime. This is computed from the
//stat. hadronization model (Vale) or thermal fist (Max)
//this is the value for the secondary protons
Tau1 = 1.65;
//for primoridials (the Lambdas) we put 0
Tau2 = 0;
//put in the average mass of the resonances (again from SHM or TF)
//this is the value for protons
fM1 = 1362;
//generate a random path length for the propagation of the resonances
//nothing to change!
RanVal1 = RanGen.Exponential(fM1/(fP1*Tau1));
//adds a single entry into the PDF for the angular distribution to be used
MagicSource.AddBGT_RP(RanVal1,cos(AngleRcP1));
}
delete F_EposDisto_pReso_Lam;
// 2. Primordials p and Reso Lambdas
//open the magic file from dimi with the angular distributions.
TFile* F_EposDisto_p_LamReso = new TFile("/Users/sartozza/cernbox/SourceStudies/EPOS_AngDistrib/EposDisto_p_LamReso.root");
//set up the ntuple, do not change anything unless told so by dimi
TNtuple* T_EposDisto_p_LamReso = (TNtuple*)F_EposDisto_p_LamReso->Get("InfoTuple_ClosePairs");
unsigned N_EposDisto_p_LamReso = T_EposDisto_p_LamReso->GetEntries();
T_EposDisto_p_LamReso->SetBranchAddress("k_D",&k_D);
T_EposDisto_p_LamReso->SetBranchAddress("P1",&fP1);
T_EposDisto_p_LamReso->SetBranchAddress("P2",&fP2);
T_EposDisto_p_LamReso->SetBranchAddress("M1",&fM1);
T_EposDisto_p_LamReso->SetBranchAddress("M2",&fM2);
T_EposDisto_p_LamReso->SetBranchAddress("Tau1",&Tau1);
T_EposDisto_p_LamReso->SetBranchAddress("Tau2",&Tau2);
T_EposDisto_p_LamReso->SetBranchAddress("AngleRcP1",&AngleRcP1);
T_EposDisto_p_LamReso->SetBranchAddress("AngleRcP2",&AngleRcP2);
T_EposDisto_p_LamReso->SetBranchAddress("AngleP1P2",&AngleP1P2);
//iterate over the ntuple
for(unsigned uEntry=0; uEntry<N_EposDisto_p_LamReso; uEntry++){
//get each entry
T_EposDisto_p_LamReso->GetEntry(uEntry);
//disregard the entry of you are outside the desired k*
if(k_D>k_CutOff) continue;
//overwrite the value for the lifetime. This is computed from the
//stat. hadronization model (Vale) or thermal fist (Max)
//this is the value for the primordials protons
Tau1 = 0;
//for secondaries (the Lambdas) we put 0
Tau2 = 4.69;
//put in the average mass of the resonances (again from SHM or TF)
//this is the value for protons
fM2 = 1462;
//generate a random path length for the propagation of the resonances
//nothing to change!
RanVal2 = RanGen.Exponential(fM2/(fP2*Tau2));
//adds a single entry into the PDF for the angular distribution to be used
MagicSource.AddBGT_PR(RanVal2,cos(AngleRcP2));
}
delete F_EposDisto_p_LamReso;
// 3. Reso p and Reso Lambdas
//open the magic file from dimi with the angular distributions.
TFile* F_EposDisto_pReso_LamReso = new TFile("/Users/sartozza/cernbox/SourceStudies/EPOS_AngDistrib/EposDisto_pReso_LamReso.root");
//set up the ntuple, do not change anything unless told so by dimi
TNtuple* T_EposDisto_pReso_LamReso = (TNtuple*)F_EposDisto_pReso_LamReso->Get("InfoTuple_ClosePairs");
unsigned N_EposDisto_pReso_LamReso = T_EposDisto_pReso_LamReso->GetEntries();
T_EposDisto_pReso_LamReso->SetBranchAddress("k_D",&k_D);
T_EposDisto_pReso_LamReso->SetBranchAddress("P1",&fP1);
T_EposDisto_pReso_LamReso->SetBranchAddress("P2",&fP2);
T_EposDisto_pReso_LamReso->SetBranchAddress("M1",&fM1);
T_EposDisto_pReso_LamReso->SetBranchAddress("M2",&fM2);
T_EposDisto_pReso_LamReso->SetBranchAddress("Tau1",&Tau1);
T_EposDisto_pReso_LamReso->SetBranchAddress("Tau2",&Tau2);
T_EposDisto_pReso_LamReso->SetBranchAddress("AngleRcP1",&AngleRcP1);
T_EposDisto_pReso_LamReso->SetBranchAddress("AngleRcP2",&AngleRcP2);
T_EposDisto_pReso_LamReso->SetBranchAddress("AngleP1P2",&AngleP1P2);
//iterate over the ntuple
for(unsigned uEntry=0; uEntry<N_EposDisto_pReso_LamReso; uEntry++){
//get each entry
T_EposDisto_pReso_LamReso->GetEntry(uEntry);
//disregard the entry of you are outside the desired k*
if(k_D>k_CutOff) continue;
//overwrite the value for the lifetime. This is computed from the
//stat. hadronization model (Vale) or thermal fist (Max)
//this is the value for the secondary protons
Tau1 = 1.65;
//for primoridials (the Lambdas) we put 0
Tau2 = 4.69;
//put in the average mass of the resonances (again from SHM or TF)
//this is the value for protons
fM1 = 1362;
fM2 = 1462;
//generate a random path length for the propagation of the resonances
//nothing to change!
RanVal1 = RanGen.Exponential(fM1/(fP1*Tau1));
RanVal2 = RanGen.Exponential(fM2/(fP2*Tau2));
//adds a single entry into the PDF for the angular distribution to be used
MagicSource.AddBGT_RR(RanVal1,cos(AngleRcP1),RanVal2,cos(AngleRcP2),cos(AngleP1P2));
}
delete F_EposDisto_pReso_LamReso;
//if you have resonances contributing to both particles, we need to repeat the above procedure
//for the prim-reso (AddBGT_PR) and reso-reso (AddBGT_RR) cases
const unsigned NumSourceBins = 128;
const double rMin = 0;
const double rMax = 16;
TFile* fOutput = new TFile("fOutputpAL.root","recreate");
TH1F* hSource = new TH1F("hSource","hSource",NumSourceBins,rMin,rMax);
//fill the histo fro the source
for(unsigned uBin=0; uBin<NumSourceBins; uBin++){
//get the x-axis (r value) of the current bin
double xaxis = hSource->GetBinCenter(uBin+1);
//an array for the parameters, [0] is source size, [1] is == 2 (for a Gaussian)
double parameters[2];
parameters[0] = CoreSize;
parameters[1] = 2.0;
double SourceValue = MagicSource.RootEval(&xaxis, parameters);
hSource->SetBinContent(uBin+1,SourceValue);
//infinite errors for now
hSource->SetBinError(uBin+1,1000.);
}
//idea: fit the source distribution only in a range around its peak
//to do this: silly idea: put very large uncertainties in the bins outside of this range
//we can get this range automatically, by evaluating the central (median) integral of the source distribution
//with this set up, we fit the 68% most central yield of the source distribution
double lowerlimit;
double upperlimit;
GetCentralInterval(*hSource, 0.84, lowerlimit, upperlimit, true);
unsigned lowerbin = hSource->FindBin(lowerlimit);
unsigned upperbin = hSource->FindBin(upperlimit);
for(unsigned uBin=lowerbin; uBin<=upperbin; uBin++){
hSource->SetBinError(uBin+1,0.01);
}
printf("Core size of %.3f fm\n",CoreSize);
printf("The fit will be performed in the range [%.2f, %.2f] fm\n",lowerlimit,upperlimit);
//fyi, GaussSourceTF1 is in DLM_Source.h if you want to check it out.
TF1* fSource = new TF1("fSource",GaussSourceTF1,rMin,rMax,1);
fSource->SetParameter(0,CoreSize);
fSource->SetParLimits(0,CoreSize*0.5,CoreSize*2.0);
hSource->Fit(fSource,"S, N, R, M");
printf("The effective Gaussian size is %.3f +/- %.3f fm\n",fSource->GetParameter(0),fSource->GetParError(0));
//get rid of weird plotting
for(unsigned uBin=0; uBin<NumSourceBins; uBin++){
hSource->SetBinError(uBin+1,0.01);
}
hSource->Write();
fSource->Write();
delete hSource;
delete fSource;
delete fOutput;
}
void EffectiveGaussianLAL(){
//value taken from pp scaling (mT_scaling forlder)
const double CoreSize = 0.92683;
//DLM_CleverMcLevyResoTM* MagicSource = new DLM_CleverMcLevyResoTM ();
DLM_CleverMcLevyResoTM MagicSource;
//DO NOT CHANGE !!! Sets up numerical bullshit, tuned for a Gaussian source
MagicSource.InitStability(1,2-1e-6,2+1e-6);
MagicSource.InitScale(38,0.15,2.0);
MagicSource.InitRad(257*2,0,64);
MagicSource.InitType(2);
///////////////////
//for p-antiL, set up the amount of secondaries
//first for the lambdas (64.38%)
MagicSource.SetUpReso(0,0.6438);
//than for the Lambdas, here its 64.38%
MagicSource.SetUpReso(1,0.6438);
//the cut off scale in k*, for which the angular distributions from EPOS
//are evaluated. 200 MeV works okay, you can go up to 300 MeV for systematic checks
const double k_CutOff = 200;
//to be used for the NTuple later on
Float_t k_D;
Float_t fP1;
Float_t fP2;
Float_t fM1;
Float_t fM2;
Float_t Tau1;
Float_t Tau2;
Float_t AngleRcP1;
Float_t AngleRcP2;
Float_t AngleP1P2;
//random generator dimi style. The input is incompatible with the ROOT random generator,
//do not mix and match, do not ask me how I know this. Ask Bernie.
//11 is the seed, you can change that to you favorite number
DLM_Random RanGen(11);
//dummies to save random shit
double RanVal1;
double RanVal2;
double RanVal3;
// 1. Primordials Lambdas and Reso Lambdas
//open the magic file from dimi with the angular distributions.
TFile* F_EposDisto_Lam_LamReso = new TFile("/Users/sartozza/cernbox/SourceStudies/EPOS_AngDistrib/EposDisto_Lam_LamReso.root");
//set up the ntuple, do not change anything unless told so by dimi
TNtuple* T_EposDisto_Lam_LamReso = (TNtuple*)F_EposDisto_Lam_LamReso->Get("InfoTuple_ClosePairs");
unsigned N_EposDisto_Lam_LamReso = T_EposDisto_Lam_LamReso->GetEntries();
T_EposDisto_Lam_LamReso->SetBranchAddress("k_D",&k_D);
T_EposDisto_Lam_LamReso->SetBranchAddress("P1",&fP1);
T_EposDisto_Lam_LamReso->SetBranchAddress("P2",&fP2);
T_EposDisto_Lam_LamReso->SetBranchAddress("M1",&fM1);
T_EposDisto_Lam_LamReso->SetBranchAddress("M2",&fM2);
T_EposDisto_Lam_LamReso->SetBranchAddress("Tau1",&Tau1);
T_EposDisto_Lam_LamReso->SetBranchAddress("Tau2",&Tau2);
T_EposDisto_Lam_LamReso->SetBranchAddress("AngleRcP1",&AngleRcP1);
T_EposDisto_Lam_LamReso->SetBranchAddress("AngleRcP2",&AngleRcP2);
T_EposDisto_Lam_LamReso->SetBranchAddress("AngleP1P2",&AngleP1P2);
//iterate over the ntuple
for(unsigned uEntry=0; uEntry<N_EposDisto_Lam_LamReso; uEntry++){
//get each entry
T_EposDisto_Lam_LamReso->GetEntry(uEntry);
//disregard the entry of you are outside the desired k*
if(k_D>k_CutOff) continue;
//overwrite the value for the lifetime. This is computed from the
//stat. hadronization model (Vale) or thermal fist (Max)
//this is the value for the secondary protons
Tau1 = 0.;
//for primoridials (the Lambdas) we put 0
Tau2 = 4.69;
//put in the average mass of the resonances (again from SHM or TF)
//this is the value for protons
fM2 = 1462;
//generate a random path length for the propagation of the resonances
//nothing to change!
RanVal2 = RanGen.Exponential(fM2/(fP2*Tau2));
//adds a single entry into the PDF for the angular distribution to be used
MagicSource.AddBGT_PR(RanVal2,cos(AngleRcP2));
MagicSource.AddBGT_RP(RanVal2,-cos(AngleRcP2));
}
delete F_EposDisto_Lam_LamReso;
// 3. Reso Lambda and Reso Lambdas
//open the magic file from dimi with the angular distributions.
TFile* F_EposDisto_LamReso_LamReso = new TFile("/Users/sartozza/cernbox/SourceStudies/EPOS_AngDistrib/EposDisto_LamReso_LamReso.root");
//set up the ntuple, do not change anything unless told so by dimi
TNtuple* T_EposDisto_LamReso_LamReso = (TNtuple*)F_EposDisto_LamReso_LamReso->Get("InfoTuple_ClosePairs");
unsigned N_EposDisto_LamReso_LamReso = T_EposDisto_LamReso_LamReso->GetEntries();
T_EposDisto_LamReso_LamReso->SetBranchAddress("k_D",&k_D);
T_EposDisto_LamReso_LamReso->SetBranchAddress("P1",&fP1);
T_EposDisto_LamReso_LamReso->SetBranchAddress("P2",&fP2);
T_EposDisto_LamReso_LamReso->SetBranchAddress("M1",&fM1);
T_EposDisto_LamReso_LamReso->SetBranchAddress("M2",&fM2);
T_EposDisto_LamReso_LamReso->SetBranchAddress("Tau1",&Tau1);
T_EposDisto_LamReso_LamReso->SetBranchAddress("Tau2",&Tau2);
T_EposDisto_LamReso_LamReso->SetBranchAddress("AngleRcP1",&AngleRcP1);
T_EposDisto_LamReso_LamReso->SetBranchAddress("AngleRcP2",&AngleRcP2);
T_EposDisto_LamReso_LamReso->SetBranchAddress("AngleP1P2",&AngleP1P2);
//iterate over the ntuple
for(unsigned uEntry=0; uEntry<N_EposDisto_LamReso_LamReso; uEntry++){
//get each entry
T_EposDisto_LamReso_LamReso->GetEntry(uEntry);
//disregard the entry of you are outside the desired k*
if(k_D>k_CutOff) continue;
//overwrite the value for the lifetime. This is computed from the
//stat. hadronization model (Vale) or thermal fist (Max)
//this is the value for the secondary protons
Tau1 = 4.69;
//for primoridials (the Lambdas) we put 0
Tau2 = 4.69;
//put in the average mass of the resonances (again from SHM or TF)
//this is the value for protons
fM1 = 1462;
fM2 = 1462;
//generate a random path length for the propagation of the resonances
//nothing to change!
RanVal1 = RanGen.Exponential(fM1/(fP1*Tau1));
RanVal2 = RanGen.Exponential(fM2/(fP2*Tau2));
//adds a single entry into the PDF for the angular distribution to be used
MagicSource.AddBGT_RR(RanVal1,cos(AngleRcP1),RanVal2,cos(AngleRcP2),cos(AngleP1P2));
}
delete F_EposDisto_LamReso_LamReso;
//if you have resonances contributing to both particles, we need to repeat the above procedure
//for the prim-reso (AddBGT_PR) and reso-reso (AddBGT_RR) cases
const unsigned NumSourceBins = 128;
const double rMin = 0;
const double rMax = 16;
TFile* fOutput = new TFile("fOutputLAL.root","recreate");
TH1F* hSource = new TH1F("hSource","hSource",NumSourceBins,rMin,rMax);
//fill the histo fro the source
for(unsigned uBin=0; uBin<NumSourceBins; uBin++){
//get the x-axis (r value) of the current bin
double xaxis = hSource->GetBinCenter(uBin+1);
//an array for the parameters, [0] is source size, [1] is == 2 (for a Gaussian)
double parameters[2];
parameters[0] = CoreSize;
parameters[1] = 2.0;
double SourceValue = MagicSource.RootEval(&xaxis, parameters);
hSource->SetBinContent(uBin+1,SourceValue);
//infinite errors for now
hSource->SetBinError(uBin+1,1000.);
}
//idea: fit the source distribution only in a range around its peak
//to do this: silly idea: put very large uncertainties in the bins outside of this range
//we can get this range automatically, by evaluating the central (median) integral of the source distribution
//with this set up, we fit the 68% most central yield of the source distribution
double lowerlimit;
double upperlimit;
GetCentralInterval(*hSource, 0.84, lowerlimit, upperlimit, true);
unsigned lowerbin = hSource->FindBin(lowerlimit);
unsigned upperbin = hSource->FindBin(upperlimit);
for(unsigned uBin=lowerbin; uBin<=upperbin; uBin++){
hSource->SetBinError(uBin+1,0.01);
}
printf("Core size of %.3f fm\n",CoreSize);
printf("The fit will be performed in the range [%.2f, %.2f] fm\n",lowerlimit,upperlimit);
//fyi, GaussSourceTF1 is in DLM_Source.h if you want to check it out.
TF1* fSource = new TF1("fSource",GaussSourceTF1,rMin,rMax,1);
fSource->SetParameter(0,CoreSize);
fSource->SetParLimits(0,CoreSize*0.5,CoreSize*2.0);
hSource->Fit(fSource,"S, N, R, M");
printf("The effective Gaussian size is %.3f +/- %.3f fm\n",fSource->GetParameter(0),fSource->GetParError(0));
//get rid of weird plotting
for(unsigned uBin=0; uBin<NumSourceBins; uBin++){
hSource->SetBinError(uBin+1,0.01);
}
hSource->Write();
fSource->Write();
delete hSource;
delete fSource;
delete fOutput;
}
int CalculateSource(int argc, char *argv[]){
printf("Suck my cock\n");
DLM_Timer TIMER;
// EffectiveGaussianXiCock();
// EffectiveGaussianpAL();
EffectiveGaussianLAL();
long long ExeTime = TIMER.Stop()/1000.;
char* strtime = new char [128];
ShowTime(ExeTime,strtime,0,true,6);
printf("The script terminated after: %s\n",strtime);
delete [] strtime;
return 0;
}