-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
202 lines (160 loc) · 7.29 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import argparse
import torchvision
import time
from pathlib import Path
from datetime import datetime, date
import json
import sys
import os
os.environ['KMP_DUPLICATE_LIB_OK']='True'
from data_utils.wider_dataset import *
from data_utils.wider_eval import *
from data_utils.arraytools import *
from data_utils.data_read import *
from model.model_utils import *
from model.fasterrcnn import *
from model.advattack import *
from data_utils.utils import *
torch.cuda.empty_cache()
def arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--lr", default=1e-5, type=float)
parser.add_argument("--weight-decay", default=0.0005, type=float)
parser.add_argument("--momentum", default=0.9, type=float)
parser.add_argument("--batch_size", default=1, type=int)
parser.add_argument("--workers", default=0, type=int)
parser.add_argument("--start-epoch", default=0, type=int)
parser.add_argument("--epochs", default=50, type=int)
parser.add_argument("--save-every", default=5, type=int)
parser.add_argument("--resume", default="")
parser.add_argument("--debug", action="store_true")
parser.add_argument("--limit-images", default=None, type=int)
parser.add_argument("--freeze-backbone", action="store_true")
parser.add_argument("--freeze-rpn", action="store_true")
parser.set_defaults(freeze_backbone=False)
parser.set_defaults(freeze_rpn=False)
return parser.parse_args()
def main():
args = arguments()
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
train_img_list, train_bboxes = wider_read(limit_images=args.limit_images)
test_img_list, test_bboxes = wider_read(limit_images=args.limit_images, train=False)
train_dataset = WiderDataset(train_img_list[:-1000], train_bboxes[:-1000])
val_dataset = WiderDataset(train_img_list[-1000:], train_bboxes[-1000:])
test_dataset = WiderDataset(test_img_list, test_bboxes)
print('Batch Size being used: ',args.batch_size)
train_loader = DataLoader(train_dataset,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
collate_fn=collate_fn
)
val_loader = DataLoader(val_dataset,
batch_size=2,
shuffle=True,
num_workers=args.workers,
collate_fn=collate_fn
)
test_loader = DataLoader(test_dataset,
batch_size=2,
shuffle=True,
num_workers=args.workers,
collate_fn=collate_fn
)
model = load_Faster_RCNN(backbone='resnet18', freeze_backbone=args.freeze_backbone, freeze_rpn=args.freeze_rpn)
model.to(device)
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1)
# lr_scheduler = None
print("Model built")
if args.resume:
checkpoint = torch.load(os.getcwd()+'/saved_models/'+args.resume)
model.load_state_dict(checkpoint['model'])
# if args.freeze_backbone is False and args.freeze_rpn is False:
# optimizer.load_state_dict(checkpoint['optimizer'])
# Set the start epoch if it has not been
if not args.start_epoch:
args.start_epoch = checkpoint['epoch']+1
print('Model loaded from checkpoint ', args.resume)
start_time = time.time()
step_time = time.time()
train_loss_hist = Averager()
val_loss_hist = Averager()
train_epoch_loss = {}
model.train()
print('Model training started at ',datetime.now())
for epoch in range(args.start_epoch, args.epochs):
# torch.cuda.empty_cache()
# model.to(device)
train_loss_hist.reset()
val_loss_hist.reset()
# print(epoch)
try:
train_epoch(model, epoch, train_loader, train_loss_hist, optimizer)
except Exception() as e:
epoch_time = time.time()
print("Error block")
print(f"Epoch Time elapsed: {convert(epoch_time - step_time)}")
save_checkpoint({
'epoch': epoch,
'batch_size': train_loader.batch_size,
'model': model.state_dict(),
'optimizer': optimizer.state_dict()
}, filename=f"fasterrcnn_resnet18_checkpoint_{date.today()}_{epoch}.pth")
raise e
# End program execution
return
val_epoch(model, val_loader, val_loss_hist)
# update the learning rate
if lr_scheduler is not None:
lr_scheduler.step()
if (epoch) % args.save_every == 0:
save_checkpoint({
'epoch': epoch,
'batch_size': train_loader.batch_size,
'model': model.state_dict(),
'optimizer': optimizer.state_dict()
}, filename=f"fasterrcnn_resnet18_checkpoint_{date.today()}_{epoch}.pth")
print(f"Saved Model - fasterrcnn_resnet18_checkpoint_{date.today()}_{epoch}.pth")
train_epoch_loss.update({epoch:train_loss_hist.value})
print(f"Epoch #{epoch} Train loss: {train_loss_hist.value} | Val loss: {val_loss_hist.value}")
epoch_time = time.time()
print(f"Epoch Time elapsed: {convert(epoch_time - step_time)}")
step_time = epoch_time
end_time = time.time()
print(f"Total Time elapsed: {convert(end_time - start_time)}")
with open(f"results/train losses {date.today()} final.json", "w") as outfile:
json.dump(train_epoch_loss, outfile)
save_checkpoint({
'epoch': epoch,
'batch_size': train_loader.batch_size,
'model': model.state_dict(),
'optimizer': optimizer.state_dict()
}, filename=f"fasterrcnn_resnet18_{date.today()}_final.pth")
print(f"Saved Final Model fasterrcnn_resnet18_{date.today()}_final.pth")
# TEST SET METRICS
start = time.time()
prediction_info = []
target_info = []
model.eval()
for images, targets in test_loader:
images = list(image.to(device) for image in images)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
with torch.no_grad():
predictions = model(images)
predictions = [{k: v.to('cpu').detach() for k, v in t.items()} for t in predictions]
targets = [{k: v.to('cpu').detach() for k, v in t.items()} for t in targets]
prediction_info.append(predictions)
target_info.append(targets)
torch.cuda.empty_cache()
# print(len(predictions[0]['scores']))
end = time.time()
print(f"Time elapsed in Predicting: {convert(end - start)}")
prediction_info = list(itertools.chain(*prediction_info))
target_info = list(itertools.chain(*target_info))
r = evaluation(prediction_info, target_info, iou_thresh=0.5, interpolation_method='EveryPoint', disable_bar=True)
print("The mAP for Test Set is:",r['AP'])
# PlotPrecisionRecallCurve(r)
if __name__ == '__main__':
main()