-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathML_Util.py
56 lines (43 loc) · 1.89 KB
/
ML_Util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from math import pi
import re
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV, RandomizedSearchCV
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn import preprocessing
from query_handler import query_handler
from util_handler import util_handler
import pickle
class ML_Util(object):
def remove_special_char(self, data_set):
data_set.replace('[^a-zA-Z0-9 \n\.]', '',regex=True,inplace=True)
data_set= data_set.applymap(lambda s:s.lower() if type(s) == str else s)
return data_set
def label_encoder(self, data_column):
label_encoder = preprocessing.LabelEncoder()
data_column = label_encoder.fit_transform(data_column)
return data_column
def vectorize_X(self, X):
vectorized = CountVectorizer(min_df=5, ngram_range=(1,2)).fit(X)
return vectorized
def transform(self, vectorized, X):
X_train_vectorized = vectorized.transform(X)
return X_train_vectorized
def train_test_split(self, X, y, test_size_perc, random_state):
return train_test_split(X, y, test_size = test_size_perc, stratify = y, random_state = random_state)
def publish_model(self, model, model_name):
pickle.dump(model, open(model_name,'wb'))
def load_model(self, model_name):
model = pickle.load(open(model_name,'rb'))
return model
def train_model(self,alg, X, y):
model = alg.fit(X, y)
return model
def evaluate_classification(self, model, X, y_test):
X_test_prediction = model.predict(X)
test_data_accuracy = accuracy_score(X_test_prediction, y_test)
return test_data_accuracy