-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
174 lines (130 loc) · 4.79 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torchvision import datasets, transforms
from sklearn import metrics
import numpy as np
from tqdm import tqdm
class params:
batch_size = 1024
epochs = 100
lr = 1e-3
class Block(nn.Module):
def __init__(self, in_channels, out_channels):
super(Block, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, 3, 1, 1)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, 3, 1, 1)
self.bn2 = nn.BatchNorm2d(out_channels)
self.shortcut = nn.Sequential() if in_channels == out_channels else lambda x: 0
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ConvNet(nn.Module):
def __init__(self, num_classes=10):
super(ConvNet, self).__init__()
structure = [
(3, 64),
64,
"p",
(64, 128),
128,
"p",
(128, 256),
256,
"p",
(256, 512),
512,
]
layers = []
for layer in structure:
if layer == "p":
layers.append(nn.MaxPool2d(2))
elif isinstance(layer, tuple):
layers.append(Block(layer[0], layer[1]))
else:
layers.append(Block(layer, layer))
self.conv = nn.Sequential(*layers)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.dropout = nn.Dropout()
self.fc = nn.Linear(512, num_classes)
def forward(self, x):
x = self.conv(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.dropout(x)
x = self.fc(x)
x = F.log_softmax(x, 1)
return x
if __name__ == "__main__":
is_cuda = torch.cuda.is_available()
device = torch.device("cuda" if is_cuda else "cpu")
kwargs = {"batch_size": params.batch_size}
if is_cuda:
kwargs.update({"num_workers": 1, "pin_memory": True, "shuffle": True})
transform = transforms.Compose([transforms.ToTensor()])
train_set = datasets.CIFAR10(
"../../data", train=True, download=True, transform=transform
)
test_set = datasets.CIFAR10("../../data", train=False, transform=transform)
train_loader = torch.utils.data.DataLoader(train_set, **kwargs)
test_loader = torch.utils.data.DataLoader(test_set, **kwargs)
label_names = [
"airplane",
"automobile",
"bird",
"cat",
"deer",
"dog",
"frog",
"horse",
"ship",
"truck",
]
metric_names = ["loss", "accuracy"]
model = ConvNet(num_classes=10)
model.to(device)
num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Parameters: {num_params}")
optimizer = torch.optim.Adam(model.parameters(), lr=params.lr)
writer = SummaryWriter(log_dir="./logs")
temp_ipt = torch.rand(5, 3, 32, 32, device=device)
writer.add_graph(model, temp_ipt)
for epoch in range(params.epochs):
model.train()
train_metrics = [0, 0]
for idx, (data, target) in tqdm(
enumerate(train_loader), f"Epoch: {epoch + 1}", total=len(train_loader)
):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
train_metrics[0] += loss.item()
output = output.cpu().detach().numpy()
target = target.cpu().detach().numpy()
output = np.argmax(output, 1)
train_metrics[1] += metrics.accuracy_score(y_true=target, y_pred=output)
train_metrics = np.array(train_metrics) / len(train_loader)
for name, val in zip(metric_names, train_metrics):
writer.add_scalar("train/" + name, val, epoch)
test_metrics = [0, 0]
model.eval()
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_metrics[0] += F.nll_loss(output, target).item()
output = output.cpu().detach().numpy()
target = target.cpu().detach().numpy()
output = np.argmax(output, 1)
test_metrics[1] += metrics.accuracy_score(y_true=target, y_pred=output)
test_metrics = np.array(test_metrics) / len(test_loader)
for name, val in zip(metric_names, test_metrics):
writer.add_scalar("test/" + name, val, epoch)