-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
446 lines (385 loc) · 15.4 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
# ref -> https://huggingface.co/blog/fine-tune-whisper
import os
from dotenv import load_dotenv
import wandb
import sys
import logging
import warnings
import pandas as pd
from transformers import (
HfArgumentParser,
Seq2SeqTrainer,
Seq2SeqTrainingArguments,
AutoConfig,
AutoFeatureExtractor,
AutoModelForSpeechSeq2Seq,
AutoProcessor,
AutoTokenizer,
set_seed,
WhisperFeatureExtractor,
WhisperForConditionalGeneration,
WhisperProcessor,
WhisperTokenizer,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
from transformers.utils import check_min_version, send_example_telemetry
from datasets import DatasetDict, concatenate_datasets
from schemas import (
ModelArguments,
DataTrainingArguments,
DataCollatorSpeechSeq2SeqWithPadding,
LoRAArguments,
)
from src.augment import DataAugmentator
from src.dataloader import load_datasets_from_config
from src.metrics import MetricsCalculator, TextNormalizer
from src.callbacks import ShuffleCallback, EpochProgressCallback, SavePeftModelCallback, MetricsSavingCallback, SaveBestModelCallback
from src.viz import Visualization
from loguru import logger
from src.metrics_cache import MetricsCache
from peft import get_peft_model, prepare_model_for_kbit_training
# load environment variables from .env file
load_dotenv()
# init wandb
os.environ["WANDB_PROJECT"] = os.getenv(
"WANDB_PROJECT", "tokyo_whisperers"
) # TODO: can get from args?
os.environ["WANDB_API_KEY"] = os.getenv("WANDB_API_KEY")
wandb.login(key=os.getenv("WANDB_API_KEY"))
def _suppress_warnings() -> None:
"""Suppresses specific warnings and logs for cleaner output."""
warnings.filterwarnings("ignore", category=UserWarning)
logging.getLogger("transformers").setLevel(logging.ERROR)
logging.getLogger("datasets").setLevel(logging.ERROR)
DEBUG = False
if not DEBUG:
_suppress_warnings()
def main():
# parse arguments
parser = HfArgumentParser(
(ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments, LoRAArguments)
)
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
model_args, data_args, training_args, lora_args = parser.parse_json_file(
json_file=os.path.abspath(sys.argv[1])
)
else:
model_args, data_args, training_args, lora_args = (
parser.parse_args_into_dataclasses()
)
# setting seed for reproducibility
logger.info(f"Setting seed to {training_args.seed}")
set_seed(training_args.seed)
# init metrics cache
logger.info(f"Initializing metrics cache at {training_args.output_dir}")
mt = MetricsCache(training_args.output_dir)
# load datasets
raw_datasets = DatasetDict()
if training_args.do_train:
logger.info(f"Loading training dataset from {data_args.dataset_config_path}")
raw_datasets["train"] = load_datasets_from_config(
data_args.dataset_config_path,
"train",
16000, # whisper sampling rate
data_args.train_dataset_fraction,
)
if training_args.do_eval:
logger.info(f"Loading evaluation dataset from {data_args.dataset_config_path}")
raw_datasets["eval"] = load_datasets_from_config(
data_args.dataset_config_path,
"eval",
16000,
data_args.eval_dataset_fraction,
)
if data_args.do_augment:
logger.info(
f"Training data size - before augmentation: {len(raw_datasets['train'])}"
)
# init data augmentator
data_augmentator = DataAugmentator(data_args.audio_column_name)
# augment training data
augmented_raw_training_dataset = raw_datasets["train"].map(
data_augmentator.augment_dataset,
desc="Applying augmentation to the training dataset",
)
# combine original training data and augmented data
raw_datasets["train"] = concatenate_datasets(
[raw_datasets["train"], augmented_raw_training_dataset]
)
logger.info(
f"Training data size - after augmentation: {len(raw_datasets['train'])}"
)
# load model and tokenizer
config = AutoConfig.from_pretrained(model_args.model_name_or_path)
feature_extractor = WhisperFeatureExtractor.from_pretrained(
model_args.model_name_or_path,
language="japanese",
task="transcribe",
)
tokenizer = WhisperTokenizer.from_pretrained(
model_args.model_name_or_path,
language="japanese",
task="transcribe",
)
if hasattr(model_args, "use_lora") and model_args.use_lora:
logger.info(
"Loading model in 8-bit mode..."
) # TODO: explore not using this shiz
model = WhisperForConditionalGeneration.from_pretrained(
model_args.model_name_or_path, load_in_8bit=True, device_map="auto"
)
else:
model = WhisperForConditionalGeneration.from_pretrained(
model_args.model_name_or_path
)
# set up model configuration
model.config.language = "japanese"
model.config.forced_decoder_ids = None
model.config.suppress_tokens = []
model.config.use_cache = False
# https://huggingface.co/docs/transformers/en/model_doc/whisper#transformers.WhisperConfig
model.config.dropout = (
training_args.dropout if hasattr(training_args, "dropout") else 0.1
)
model.config.attention_dropout = (
training_args.attention_dropout
if hasattr(training_args, "attention_dropout")
else 0.1
)
model.config.activation_dropout = (
training_args.activation_dropout
if hasattr(training_args, "activation_dropout")
else 0.1
)
# add spec augment. for now default parameters will be used.
model.config.apply_spec_augment = (
True if hasattr(training_args, "apply_spec_augment") else False
)
# init processor and data collator
feature_extractor.save_pretrained(training_args.output_dir)
tokenizer.save_pretrained(training_args.output_dir)
config.save_pretrained(training_args.output_dir)
processor = WhisperProcessor.from_pretrained(
training_args.output_dir, language="japanese", task="transcribe"
)
data_collator = DataCollatorSpeechSeq2SeqWithPadding(
processor=processor,
decoder_start_token_id=model.config.decoder_start_token_id,
)
# init text normalizer
text_normalizer = TextNormalizer()
# preproc datasets -> sampling to 16k
def prepare_dataset(batch):
# process audio
sample = batch[data_args.audio_column_name]
inputs = feature_extractor(
sample["array"], sampling_rate=sample["sampling_rate"]
)
batch[feature_extractor.model_input_names[0]] = inputs.get(
feature_extractor.model_input_names[0]
)[0]
batch["input_length"] = len(sample["array"])
# process text
# TODO: check manually the labels could be weird
input_str = batch[data_args.text_column_name]
input_str = text_normalizer.normalize(
input_str, do_lower=data_args.do_lower_case
)
if data_args.do_remove_punctuation:
input_str = text_normalizer.normalizer(input_str).strip()
batch["labels"] = tokenizer(input_str).input_ids
return batch
def prepare_dataset_for_lora(batch):
audio = batch["audio"]
# compute log-Mel input features from input audio array
batch["input_features"] = feature_extractor(
audio["array"], sampling_rate=audio["sampling_rate"]
).input_features[0]
# encode target text to label ids
batch["labels"] = tokenizer(batch["sentence"]).input_ids
batch["input_length"] = len(audio["array"])
return batch
# process datasets
prep_fn = (
prepare_dataset_for_lora
if hasattr(model_args, "use_lora") and model_args.use_lora
else prepare_dataset
)
vectorized_datasets = raw_datasets.map(
prep_fn,
remove_columns=next(iter(raw_datasets.values())).features.keys(),
).with_format("torch")
if training_args.do_train:
vectorized_datasets["train"] = vectorized_datasets["train"].shuffle(
# buffer_size=data_args.shuffle_buffer_size,
seed=training_args.seed,
)
# filter datasets based on audio length
max_input_length = (
data_args.max_duration_in_seconds * feature_extractor.sampling_rate
)
min_input_length = (
data_args.min_duration_in_seconds * feature_extractor.sampling_rate
)
def is_audio_in_length_range(length: int) -> bool:
"""Utility function for filtering training data.
Checks if the input length is within the user-defined minimum and maximum range.
"""
return min_input_length < length < max_input_length
vectorized_datasets["train"] = vectorized_datasets["train"].filter(
is_audio_in_length_range,
input_columns=["input_length"],
)
# init metrics calculator
metrics_calculator = MetricsCalculator(
tokenizer=tokenizer, do_normalize_eval=data_args.do_normalize_eval
)
# save processor components
if is_main_process(training_args.local_rank):
feature_extractor.save_pretrained(training_args.output_dir)
tokenizer.save_pretrained(training_args.output_dir)
config.save_pretrained(training_args.output_dir)
if hasattr(model_args, "use_lora") and model_args.use_lora:
logger.info("Applying LoRA to the model")
model = prepare_model_for_kbit_training(model)
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.model.encoder.conv1.register_forward_hook(make_inputs_require_grad)
lora_config = lora_args.create_config()
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
# add some params in training args
training_args.remove_unused_columns = False
training_args.label_names = ["labels"]
if model_args.freeze_feature_encoder:
logger.info("Freezing feature encoder...")
model.freeze_feature_encoder()
if model_args.freeze_encoder:
logger.info("Freezing encoder...")
model.freeze_encoder()
model.model.encoder.gradient_checkpointing = False
# init trainer
# TODO: add regularization
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
tokenizer=processor.feature_extractor,
data_collator=data_collator,
compute_metrics=(
metrics_calculator.compute_metrics
if training_args.predict_with_generate
else None
),
callbacks=[
# ShuffleCallback(),
SavePeftModelCallback(training_args.save_total_limit)
if model_args.use_lora
else SaveBestModelCallback(training_args.save_total_limit),
MetricsSavingCallback(training_args.output_dir)
],
)
# init wandb
wandb.init(
project=os.getenv("WANDB_PROJECT"),
name=data_args.wandb_run_name,
config={
"model_name": model_args.model_name_or_path,
"train_dataset_fraction": data_args.train_dataset_fraction,
"eval_dataset_fraction": data_args.eval_dataset_fraction,
"learning_rate": training_args.learning_rate,
"batch_size": training_args.per_device_train_batch_size,
"max_steps": training_args.max_steps,
"dataset_config_path": data_args.dataset_config_path,
"weight_decay": training_args.weight_decay,
"dropout": model.config.dropout,
"attention_dropout": model.config.attention_dropout,
"activation_dropout": model.config.activation_dropout,
"apply_spec_augment": model.config.apply_spec_augment,
},
)
# training
last_checkpoint = None
if (
os.path.isdir(training_args.output_dir)
and training_args.do_train
and not training_args.overwrite_output_dir
):
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif (
last_checkpoint is not None and training_args.resume_from_checkpoint is None
):
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
logger.info(f"Training model from checkpoint {checkpoint}")
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model()
# log and save metrics
metrics = train_result.metrics
if data_args.max_train_samples:
metrics["train_samples"] = data_args.max_train_samples
# Save the training log history as a CSV file
df = pd.DataFrame(trainer.state.log_history)
save_path = os.path.join(training_args.output_dir, "train_history.csv")
df.to_csv(save_path, index=False)
# log metrics using trainer's logger
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
# add training metrics to cache
mt.add_metrics(metrics, "train")
trainer.save_state()
# eval
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate(
metric_key_prefix="eval",
max_length=training_args.generation_max_length,
num_beams=training_args.generation_num_beams,
)
if data_args.max_eval_samples:
metrics["eval_samples"] = data_args.max_eval_samples
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# add eval metrics to cache
mt.add_metrics(metrics, "eval")
kwargs = {
"finetuned_from": model_args.model_name_or_path,
"tasks": "automatic-speech-recognition",
"tags": "whisper-event",
}
if data_args.dataset_name is not None:
kwargs["dataset_tags"] = data_args.dataset_name
if data_args.dataset_config_name is not None:
kwargs["dataset"] = (
f"{data_args.dataset_name} {data_args.dataset_config_name}"
)
else:
kwargs["dataset"] = data_args.dataset_name
if "common_voice" in data_args.dataset_name:
kwargs["language"] = data_args.dataset_config_name
if model_args.model_index_name is not None:
kwargs["model_name"] = model_args.model_index_name
if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(**kwargs)
viz = Visualization(training_args.output_dir)
viz.save_all()
return results
if __name__ == "__main__":
main()