-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
267 lines (216 loc) · 7.52 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import time
import logging
import argparse
from pathlib import Path
import yaml
import gc
import random
import gc
from types import SimpleNamespace
import os
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.optim import AdamW
import numpy as np
from model.model import TimmSegModel, convert_3d
from training_utils import AverageMeter, timeSince
from datasets.augmentations import get_augmentation
from datasets.train_dataset import TrainKidney3DDataset
from datasets.valid_dataset import ValidKidney3DDataset
import losses
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
standard_data_path = Path('./configs/baseline.yaml')
OUTPUT_DIR = Path('./checkpoints')
data_dir = Path('./data/')
patch_size = (32,128,128)
stride = (32,64,64)
def train_fn(
train_loader: DataLoader,
valid_loader: DataLoader,
model: nn.Module,
criterion: nn.Module,
optimizer,
epoch: int,
scheduler,
device,
best_score,
CFG,
) -> torch.Tensor:
"""Trains model on train loader. Saves best score."""
model.train()
scaler = torch.cuda.amp.GradScaler(enabled=CFG.apex)
losses = AverageMeter()
start = end = time.time()
global_step = 0
for step, (batch) in enumerate(train_loader):
inputs = batch['image'].to(device)
labels = batch['mask'].to(device)
batch_size = labels.size(0)
# Use amp if enabled
with torch.cuda.amp.autocast(enabled=CFG.apex):
y_preds = model(inputs)
loss = criterion(y_preds, labels)
losses.update(loss.item(), batch_size)
scaler.scale(loss).backward()
# Gradient clipping
grad_norm = torch.nn.utils.clip_grad_norm_(
model.parameters(), CFG.max_grad_norm
)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
global_step += 1
scheduler.step()
end = time.time()
if step % CFG.print_freq == 0 or step == (len(train_loader) - 1):
logging.info(
"Epoch: [{0}][{1}/{2}] "
"Elapsed {remain:s} "
"Loss: {loss.val:.4f}({loss.avg:.4f}) "
"Grad: {grad_norm:.4f} "
"LR: {lr:.8f} ".format(
epoch + 1,
step,
len(train_loader),
remain=timeSince(start, float(step + 1) / len(train_loader)),
loss=losses,
grad_norm=grad_norm,
lr=scheduler.get_lr()[0],
)
)
if CFG.eval_step_save_start_epoch <= epoch and (
(step + 1) % CFG.eval_freq == 0
):
val_loss = valid_fn(valid_loader, model, criterion, device, CFG)
score = val_loss
if score < best_score:
best_score = score
save_ckpt(model, CFG)
logging.info(f"Saving New Best Score Model")
# Clear memory
torch.cuda.empty_cache()
gc.collect()
return losses.avg, best_score
@torch.inference_mode()
def valid_fn(
valid_loader: DataLoader,
model: nn.Module,
criterion: nn.Module,
device,
CFG,
) -> tuple[torch.Tensor, np.ndarray]:
"""Validates model on valid loader."""
losses = AverageMeter()
model.eval()
start = end = time.time()
for step, (batch) in enumerate(valid_loader):
inputs = batch['image'].to(device)
labels = batch['mask'].to(device)
batch_size = labels.size(0)
y_preds = model(inputs)
loss = criterion(y_preds, labels)
losses.update(loss.item(), batch_size)
end = time.time()
if step % CFG.print_freq == 0 or step == (len(valid_loader) - 1):
logging.info(
"EVAL: [{0}/{1}] "
"Elapsed {remain:s} "
"Loss: {loss.val:.4f}({loss.avg:.4f}) ".format(
step,
len(valid_loader),
loss=losses,
remain=timeSince(start, float(step + 1) / len(valid_loader)),
)
)
model.train()
return losses.avg
def save_ckpt(
model: torch.nn.Module,
CFG
) -> None:
"""Saves checkpoint of model"""
save_path = OUTPUT_DIR + f'/{CFG.ckpt_name}.pth'
torch.save(
{"model": model.state_dict()},
save_path,
)
def seed_everything(seed=42):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def get_args():
parser = argparse.ArgumentParser(description='Train model on 3D kidney.')
parser.add_argument('--config', '-C',
type=str, default=standard_data_path,
help='yaml file path for model config')
parser.add_argument('--data_dir', '-D',
type=str, default=data_dir,
help='where to load and save data')
return parser.parse_args()
def load_config(config_file):
with open(config_file, 'r') as file:
config_dict = yaml.safe_load(file)
# Convert dic to namespace
config_obj = SimpleNamespace(**config_dict)
return config_obj
if __name__ == '__main__':
args = get_args()
CFG = load_config(args.config)
logging.basicConfig(level=logging.INFO, format='%(levelname)s: %(message)s')
seed_everything(seed=42)
# Load data
kidney3 = np.load(args.data_dir / f'kidney3_dense.npz')
kidney3_volume = kidney3['volume'].astype(np.uint8)
kidney3_masks = kidney3['mask'].astype(np.uint8)
kidney1 = np.load(args.data_dir / f'kidney1_dense.npz')
kidney1_volume = kidney1['volume'].astype(np.uint8)
kidney1_masks = kidney1['mask'].astype(np.uint8)
# Load model
model = TimmSegModel(CFG.backbone)
model = convert_3d(model)
model.to(device)
total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
logging.info(f"Trainable parameters: {total_params}")
aug = get_augmentation()
train_dataset = TrainKidney3DDataset(
patches=kidney1_volume,
masks=kidney1_masks,
patch_size=patch_size,
transformations=get_augmentation(),
)
valid_dataset = ValidKidney3DDataset(
patches=kidney3_volume,
masks=kidney3_masks,
patch_size=patch_size,
stride_size=(64, 64, 64),
)
train_loader = DataLoader(train_dataset, batch_size=CFG.batch_size, shuffle=True)
valid_loader = DataLoader(valid_dataset, batch_size=CFG.infer_batch_size, shuffle=False)
# Loss function and optimizer
# criterion = BCELoss(pos_weight=120,device=device)
criterion = losses.DiceLoss()
optimizer = AdamW(model.parameters(), lr=CFG.decoder_lr)
num_train_steps = int(len(train_dataset) / CFG.batch_size * CFG.epochs)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, num_train_steps//2)
best_score = np.inf
for epoch in range(CFG.epochs):
start_time = time.time()
avg_loss, best_score = train_fn(
train_loader,
valid_loader,
model,
criterion,
optimizer,
epoch,
scheduler,
device,
best_score,
CFG
)
avg_val_loss = valid_fn(valid_loader, model, criterion, device, CFG)
elapsed = time.time() - start_time
save_ckpt(model, CFG)