-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflask_app.py
53 lines (39 loc) · 1.83 KB
/
flask_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# Prerequisite: flask, werkzeug,
# To Run the File: python flask_app.py
import os
from flask import Flask, request
from werkzeug.utils import secure_filename
# CV Libraries
from azure.cognitiveservices.vision.customvision.prediction import CustomVisionPredictionClient
from msrest.authentication import ApiKeyCredentials
UPLOAD_FOLDER = 'testing'
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
@app.route("/", methods=['GET'])
def welcome():
return "Welcome to my Mini Project: Sports Classification using Azure Custom Vision."
@app.route("/sports_classifier", methods=['POST'])
def custom_vision_classifier():
if request.method=='POST':
image=request.files['image']
image_name = secure_filename(image.filename)
image.save(os.path.join(app.config['UPLOAD_FOLDER'], image_name))
image_url = os.path.join(app.config['UPLOAD_FOLDER'], image_name)
ENDPOINT = "Enter prediction endpoint"
prediction_key = "Enter prediction key"
project_id = "Enter project id"
publish_iteration_name = "Enter iteration name"
prediction_credentials = ApiKeyCredentials(in_headers = {"Prediction-key": prediction_key})
predictor = CustomVisionPredictionClient(ENDPOINT, prediction_credentials)
with open(image_url, "rb") as image_contents:
results = predictor.classify_image(project_id, publish_iteration_name, image_contents.read())
tags = []
prob = []
for prediction in results.predictions:
tags.append(prediction.tag_name)
prob.append(prediction.probability * 100)
result = {t:p for t,p in zip(tags, prob)}
return result
if __name__=="__main__":
app.run(debug=True)