-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
58 lines (43 loc) · 1.76 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from torchvision import transforms, datasets
import torch
import torchvision
import torch.nn as nn
from torch.utils.data import dataset, dataloader
import matplotlib.pyplot as plt
import numpy as np
import torch.nn.functional as F
import os
from Recog_modelv1 import Net
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Net().to(device)
print(model)
torch.save(model.state_dict(), '/dev/Alzheimers/Saved_Model/RecogModelv3.pt')
# os.popen('gsutil cp -r \dev\Alzheimers\Saved_Model\RecogModelv3.pt gs:\\saved_weight\')
criterion = nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)
data_transform = transforms.Compose([
transforms.ToTensor()
])
train_data = torchvision.datasets.ImageFolder("/dev/Alzheimers/seperated-data/combined-ad", transform=data_transform)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=1, shuffle = True, num_workers=4)
total_step = len(train_loader)
epochs=10
model.train()
for epoch in range(epochs):
total=0
running_loss = 0.0
for i, (inputs, labels) in enumerate(train_loader):
inputs=inputs.to(device)
labels = labels.to(device)
outputs = model(inputs[0][0].reshape(1,1,inputs.shape[2],inputs.shape[3]))
loss = criterion(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
running_loss += loss.item()
total=total+1
print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}, Total loss : {:.4f}'
.format(epoch+1,epochs,i+1,total_step, loss.item(), running_loss))
torch.save(model.state_dict(), '/dev/Alzheimers/Saved_Model/RecogModelv3.pt')
print("Total Loss : " + str(running_loss/total))
print('Finished Training')