-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRecog_modelv1.py
48 lines (39 loc) · 1.32 KB
/
Recog_modelv1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from torchvision import transforms, datasets
import torch
import torchvision
import torch.nn as nn
from torch.utils.data import dataset, dataloader
import matplotlib.pyplot as plt
import numpy as np
import torch.nn.functional as F
class Net(nn.Module):
height,weight=53,53
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.batch1 = nn.BatchNorm2d(6)
self.conv2 = nn.Conv2d(6,16, 5)
self.batch2 = nn.BatchNorm2d(16)
# self.upsample=nn.ConvTranspose2d(1, 1,20)
self.fc1 = nn.Linear(1016064, 1000)
self.fc2 = nn.Linear(1000, 120)
self.fc3 = nn.Linear(120, 84)
self.fc4 = nn.Linear(84, 2)
def forward(self, x):
x = F.relu(self.batch1(self.conv1(x)))
x = F.relu(self.batch2(self.conv2(x)))
# a=x.cpu()
# plt.imshow(a[0][0].detach().numpy())
# plt.show()
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
x = self.fc4(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features