-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
64 lines (52 loc) · 2.15 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import os
import yaml
import argparse
import pytorch_lightning as pl
import clip
from model import stage_one, stage_two
from experiment import DistillExperiment
from pytorch_lightning import Trainer
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from dataset.dataset import LAIONDataModule
from pytorch_lightning.strategies import DDPStrategy
parser = argparse.ArgumentParser()
parser.add_argument('--config', '-c',
dest="filename",
metavar='FILE',
help='path to the config file',
default='configs/stage_one.yaml')
args = parser.parse_args()
with open(args.filename, 'r') as file:
try:
config = yaml.safe_load(file)
except yaml.YAMLError as exc:
print(exc)
tb_logger = TensorBoardLogger(save_dir=config['logging_params']['save_dir'],
name=config['model_params']['name'],)
# For reproducibility
pl.seed_everything(config['exp_params']['manual_seed'], True)
if config['model_params']['stage'] == 1:
model = stage_one.DistillModel(**config['model_params'])
elif config['model_params']['stage'] == 2:
model = stage_two.DistillModel(**config['model_params'])
else:
raise ValueError("Invalid stage number")
experiment = DistillExperiment(model,
config['exp_params'])
_, preprocess = clip.load(name=clip.available_models()[0])
data = LAIONDataModule(**config["data_params"],
pin_memory=(config['trainer_params']['accelerator'] == 'gpu'))
data.setup('fit')
data.setup('validate')
runner = Trainer(logger=tb_logger,
callbacks=[
LearningRateMonitor(),
ModelCheckpoint(save_top_k=2,
dirpath=os.path.join(tb_logger.log_dir, "checkpoints"),
monitor="val_loss",
save_last=True),
],
**config['trainer_params'])
print(f"======= Training {config['model_params']['name']} =======")
runner.fit(experiment, datamodule=data)