-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompSpecMetaScript.sml
551 lines (476 loc) · 13.8 KB
/
compSpecMetaScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
open HolKernel boolLib Parse bossLib pred_setTheory listTheory combinTheory ottTheory compSpecUtilityTheory compSpecTheory;
(* ====================================== *)
(* Compositional specification metatheory *)
(* ====================================== *)
val _ = new_theory "compSpecMeta";
(* --------------------- *)
(* Auxiliary definitions *)
(* --------------------- *)
Definition list_S_par:
(list_S_par S [] = S)
/\
(list_S_par S (S'::Sl) = S_par S (list_S_par S' Sl))
End
Definition list_S_par_alt:
list_S_par_alt (S:S) Sl = FOLDL (\S'. S_par S') S Sl
End
(* -------------------- *)
(* Semantic definitions *)
(* -------------------- *)
Definition c_sem:
(c_sem Mc Mq (c_const cn) = Mc cn)
/\
(c_sem Mc Mq (c_comp c1 c2) = c_sem Mc Mq c1 INTER c_sem Mc Mq c2)
/\
(c_sem Mc Mq (c_var q) = Mq q)
End
Definition S_sem:
(S_sem MS MV (S_const sn) = MS sn)
/\
(S_sem MS MV (S_conj S1 S2) = S_sem MS MV S1 INTER S_sem MS MV S2)
/\
(S_sem MS MV (S_assume S1 S2) =
{ b | !b'. b' IN S_sem MS MV S1 ==> b INTER b' IN S_sem MS MV S2 })
/\
(S_sem MS MV (S_par S1 S2) =
double_intersection (S_sem MS MV S1) (S_sem MS MV S2))
/\
(S_sem MS MV (S_var V) = MV V)
/\
(S_sem MS MV S_compat = { B | B <> {} })
/\
(S_sem MS MV S_top = { UNIV })
End
Definition P_sem:
(P_sem Mc MS Mq MV (P_implements c S) =
(c_sem Mc Mq c IN S_sem MS MV S))
/\
(P_sem Mc MS Mq MV (P_refines S1 S2) =
(S_sem MS MV S1 SUBSET S_sem MS MV S2))
/\
(P_sem Mc MS Mq MV (P_asserts S) =
(downward_closed (S_sem MS MV S)))
/\
(P_sem Mc MS Mq MV (P_forall_c q P) =
(!qs. P_sem Mc MS ((q =+ qs) Mq) MV P))
/\
(P_sem Mc MS Mq MV (P_exists_c q P) =
(?qs. P_sem Mc MS ((q =+ qs) Mq) MV P))
/\
(P_sem Mc MS Mq MV (P_forall_S V P) =
(!Vs. P_sem Mc MS Mq ((V =+ Vs) MV) P))
/\
(P_sem Mc MS Mq MV (P_exists_S V P) =
(?Vs. P_sem Mc MS Mq ((V =+ Vs) MV) P))
/\
(P_sem Mc MS Mq MV (P_implies P1 P2) =
(P_sem Mc MS Mq MV P1 ==> P_sem Mc MS Mq MV P2))
/\
(P_sem Mc MS Mq MV (P_and P1 P2) =
(P_sem Mc MS Mq MV P1 /\ P_sem Mc MS Mq MV P2))
/\
(P_sem Mc MS Mq MV (P_c_eq c1 c2) =
(c_sem Mc Mq c1 = c_sem Mc Mq c2))
/\
(P_sem Mc MS Mq MV (P_S_eq S1 S2) =
(S_sem MS MV S1 = S_sem MS MV S2))
End
Definition spec_compositionality:
spec_compositionality Mc MS Mq MV S0 Sl S =
(P_sem Mc MS Mq MV (P_refines (list_S_par S0 Sl) S))
End
(* FIXME: valuations not needed *)
Definition spec_system_sound:
spec_system_sound R Mc MS Mq MV =
!G P. (!P0. P0 IN G ==> P_sem Mc MS Mq MV P0) /\
R G P ==>
P_sem Mc MS Mq MV P
End
(* --------------- *)
(* Utility results *)
(* --------------- *)
Theorem fv_c_eq_c_sem:
!Mc Mq Mq' c. (!q. q IN fv_c c ==> Mq q = Mq' q) ==>
c_sem Mc Mq c = c_sem Mc Mq' c
Proof
strip_tac >> strip_tac >> strip_tac >>
Induct_on `c` >> rw [c_sem,fv_c]
QED
Theorem fv_S_eq_S_sem:
!MS MV MV' S'. (!V. V IN fv_S S' ==> MV V = MV' V) ==>
S_sem MS MV S' = S_sem MS MV' S'
Proof
strip_tac >> strip_tac >> strip_tac >>
Induct_on `S'` >> rw [S_sem,fv_S]
QED
Theorem fv_P_c_eq_P_sem:
!Mc MS P Mq Mq' MV.
(!q. q IN fv_P_c P ==> Mq q = Mq' q) ==>
P_sem Mc MS Mq MV P = P_sem Mc MS Mq' MV P
Proof
strip_tac >> strip_tac >>
Induct_on `P` >> rw [P_sem,fv_P_c] >| [
METIS_TAC [fv_c_eq_c_sem],
EQ_TAC >> rw [] >>
`!q. q IN fv_P_c P ==> ((s =+ qs) Mq) q = ((s =+ qs) Mq') q`
by rw [APPLY_UPDATE_THM] >>
`P_sem Mc MS ((s =+ qs) Mq) MV P <=> P_sem Mc MS ((s =+ qs) Mq') MV P`
by (Q.PAT_X_ASSUM `!M1 M2 M3. Q ==> R` (STRIP_ASSUME_TAC o
(Q.SPECL [`(s =+ qs) Mq`,`(s =+ qs) Mq'`])) >>
METIS_TAC []) >>
METIS_TAC [],
EQ_TAC >> rw [] >>
`!q. q IN fv_P_c P ==> ((s =+ qs) Mq) q = ((s =+ qs) Mq') q`
by rw [APPLY_UPDATE_THM] >>
`P_sem Mc MS ((s =+ qs) Mq) MV P <=> P_sem Mc MS ((s =+ qs) Mq') MV P`
by (Q.PAT_X_ASSUM `!M1 M2 M3. Q ==> R` (STRIP_ASSUME_TAC o
(Q.SPECL [`(s =+ qs) Mq`,`(s =+ qs) Mq'`])) >>
METIS_TAC []) >>
METIS_TAC [],
METIS_TAC [],
METIS_TAC [],
METIS_TAC [],
METIS_TAC [],
METIS_TAC [fv_c_eq_c_sem]
]
QED
Theorem fv_P_S_eq_P_sem:
!Mc MS P MV MV' Mq.
(!V. V IN fv_P_S P ==> MV V = MV' V) ==>
P_sem Mc MS Mq MV P = P_sem Mc MS Mq MV' P
Proof
strip_tac >> strip_tac >>
Induct_on `P` >> rw [P_sem,fv_P_S] >| [
METIS_TAC [fv_S_eq_S_sem],
METIS_TAC [fv_S_eq_S_sem],
METIS_TAC [fv_S_eq_S_sem],
METIS_TAC [],
METIS_TAC [],
EQ_TAC >> rw [] >>
`!V. V IN fv_P_S P ==> ((s =+ Vs) MV) V = ((s =+ Vs) MV') V`
by rw [APPLY_UPDATE_THM] >>
`P_sem Mc MS Mq ((s =+ Vs) MV) P <=> P_sem Mc MS Mq ((s =+ Vs) MV') P`
by (Q.PAT_X_ASSUM `!M1 M2 M3. Q ==> R` (STRIP_ASSUME_TAC o
(Q.SPECL [`(s =+ Vs) MV`,`(s =+ Vs) MV'`])) >>
METIS_TAC []) >>
METIS_TAC [],
EQ_TAC >> rw [] >>
`!V. V IN fv_P_S P ==> ((s =+ Vs) MV) V = ((s =+ Vs) MV') V`
by rw [APPLY_UPDATE_THM] >>
`P_sem Mc MS Mq ((s =+ Vs) MV) P <=> P_sem Mc MS Mq ((s =+ Vs) MV') P`
by (Q.PAT_X_ASSUM `!M1 M2 M3. Q ==> R` (STRIP_ASSUME_TAC o
(Q.SPECL [`(s =+ Vs) MV`,`(s =+ Vs) MV'`])) >>
METIS_TAC []) >>
METIS_TAC [],
METIS_TAC [],
METIS_TAC [],
METIS_TAC [fv_S_eq_S_sem]
]
QED
Theorem fv_c_empty_c_sem:
!Mc Mq c q qs. fv_c c = {} ==>
c_sem Mc Mq c = c_sem Mc ((q =+ qs) Mq) c
Proof
rw [] >>
match_mp_tac fv_c_eq_c_sem >>
rw []
QED
Theorem fv_S_empty_S_sem:
!MS MV S V Vs. fv_S S = {} ==>
S_sem MS MV S = S_sem MS ((V =+ Vs) MV) S
Proof
rw [] >>
match_mp_tac fv_S_eq_S_sem >>
rw []
QED
(* --------------------- *)
(* Metatheoretic results *)
(* --------------------- *)
Theorem c_sem_comp_IDEM:
!Mc Mq c. c_sem Mc Mq (c_comp c c) = c_sem Mc Mq c
Proof
rw [c_sem]
QED
Theorem c_sem_comp_ASSOC:
!Mc Mq c1 c2 c3.
c_sem Mc Mq (c_comp c1 (c_comp c2 c3)) = c_sem Mc Mq (c_comp (c_comp c1 c2) c3)
Proof
rw [c_sem,INTER_ASSOC]
QED
Theorem c_sem_comp_COMM:
!Mc Mq c1 c2.
c_sem Mc Mq (c_comp c1 c2) = c_sem Mc Mq (c_comp c2 c1)
Proof
rw [c_sem,INTER_COMM]
QED
Theorem S_sem_IN_assume_IN:
!MS MV A1 G1 a.
a IN S_sem MS MV (S_assume A1 G1) /\
a IN S_sem MS MV A1 ==>
a IN S_sem MS MV G1
Proof
rw [S_sem] >> METIS_TAC [INTER_IDEMPOT]
QED
Theorem S_sem_IN_assume_IN:
!MS MV A1 G1 a.
a IN S_sem MS MV (S_assume A1 G1) /\
a IN S_sem MS MV A1 ==>
a IN S_sem MS MV G1
Proof
rw [S_sem] >> METIS_TAC [INTER_IDEMPOT]
QED
Theorem S_sem_IN_par_IN:
!MS MV A1 G1 x.
x IN S_sem MS MV (S_par A1 G1) <=>
?a b. x = a INTER b /\ a IN S_sem MS MV A1 /\ b IN S_sem MS MV G1
Proof
rw [S_sem,double_intersection]
QED
Theorem S_sem_conj_IDEM:
!MS MV S. S_sem MS MV (S_conj S S) = S_sem MS MV S
Proof
rw [S_sem,INTER_IDEMPOT]
QED
Theorem S_sem_conj_ASSOC:
!MS MV S1 S2 S3.
S_sem MS MV (S_conj S1 (S_conj S2 S3)) = S_sem MS MV (S_conj (S_conj S1 S2) S3)
Proof
rw [S_sem,INTER_ASSOC]
QED
Theorem S_sem_conj_COMM:
!MS MV S1 S2.
S_sem MS MV (S_conj S1 S2) = S_sem MS MV (S_conj S2 S1)
Proof
rw [S_sem,INTER_COMM]
QED
Theorem S_sem_par_ASSOC:
!MS MV S1 S2 S3.
S_sem MS MV (S_par S1 (S_par S2 S3)) = S_sem MS MV (S_par (S_par S1 S2) S3)
Proof
rw [S_sem,double_intersection_ASSOC]
QED
Theorem S_sem_par_COMM:
!MS MV S1 S2. S_sem MS MV (S_par S1 S2) = S_sem MS MV (S_par S2 S1)
Proof
rw [S_sem,double_intersection_COMM]
QED
Theorem proposition_2a:
!Mc MS Mq MV c S1 S2.
P_sem Mc MS Mq MV (P_implements c S1) /\
P_sem Mc MS Mq MV (P_refines S1 S2) ==>
P_sem Mc MS Mq MV (P_implements c S2)
Proof
rw [P_sem] >> METIS_TAC [SUBSET_DEF]
QED
Theorem proposition_2b:
!Mc MS Mq MV S1 S2 q.
(P_sem Mc MS Mq MV
(P_forall_c q
(P_implies
(P_implements (c_var q) S1)
(P_implements (c_var q) S2)))) ==>
P_sem Mc MS Mq MV (P_refines S1 S2)
Proof
rw [P_sem,c_sem] >> METIS_TAC [SUBSET_DEF,APPLY_UPDATE_THM]
QED
Theorem proposition_3a:
!Mc MS Mq MV S q1 q2.
q1 <> q2 ==>
(P_sem Mc MS Mq MV
(P_forall_c q1 (P_forall_c q2
(P_implies
(P_implements (c_var q1) S)
(P_implements (c_comp (c_var q1) (c_var q2)) S))))) ==>
P_sem Mc MS Mq MV (P_asserts S)
Proof
rw [P_sem,c_sem,downward_closed] >>
METIS_TAC [INTER_SUBSET_EQN,APPLY_UPDATE_THM]
QED
Theorem proposition3_b:
!Mc MS Mq MV S c1 c2.
P_sem Mc MS Mq MV (P_asserts S) /\
P_sem Mc MS Mq MV (P_implements c1 S) ==>
P_sem Mc MS Mq MV (P_implements (c_comp c1 c2) S)
Proof
rw [P_sem,downward_closed,c_sem] >>
METIS_TAC [INTER_SUBSET]
QED
Theorem proposition_4a:
!Mc MS Mq MV S1 S2 c.
P_sem Mc MS Mq MV (P_implements c S1) /\
P_sem Mc MS Mq MV (P_implements c S2) ==>
P_sem Mc MS Mq MV (P_implements c (S_conj S1 S2))
Proof
rw [P_sem,S_sem]
QED
Theorem proposition_4b:
!Mc MS Mq MV S1 S2 c.
P_sem Mc MS Mq MV (P_implements c (S_conj S1 S2)) ==>
P_sem Mc MS Mq MV (P_implements c S1)
Proof
rw [P_sem,S_sem]
QED
Theorem proposition_4b_alt:
!Mc MS Mq MV S1 S2 c.
P_sem Mc MS Mq MV (P_implements c (S_conj S1 S2)) ==>
P_sem Mc MS Mq MV (P_implements c S2)
Proof
rw [P_sem,S_sem]
QED
Theorem proposition_5a:
!Mc MS Mq MV S1 S2 c q1 q2.
q1 <> q2 ==>
fv_c c = {} ==>
P_sem Mc MS Mq MV (P_implements c (S_par S1 S2)) ==>
P_sem Mc MS Mq MV
(P_exists_c q1 (P_exists_c q2
(P_and (P_implements (c_var q1) S1)
(P_and (P_implements (c_var q2) S2)
(P_c_eq c (c_comp (c_var q1) (c_var q2)))))))
Proof
rw [P_sem,c_sem,S_sem,double_intersection,APPLY_UPDATE_THM] >>
Q.EXISTS_TAC `a` >>
Q.EXISTS_TAC `b` >>
rw [] >>
METIS_TAC [fv_c_empty_c_sem]
QED
Theorem proposition_5b:
!Mc MS Mq MV S1 S2 c1 c2.
P_sem Mc MS Mq MV (P_implements c1 S1) /\
P_sem Mc MS Mq MV (P_implements c2 S2) ==>
P_sem Mc MS Mq MV (P_implements (c_comp c1 c2) (S_par S1 S2))
Proof
rw [P_sem,c_sem,S_sem,double_intersection] >> METIS_TAC []
QED
Theorem proposition_6a:
!Mc MS Mq MV S1 S2. P_sem Mc MS Mq MV (P_refines (S_conj S1 S2) (S_par S1 S2))
Proof
rw [P_sem,S_sem,double_intersection,SUBSET_DEF] >> METIS_TAC [INTER_IDEMPOT]
QED
Theorem proposition_6b:
!Mc MS Mq MV S1 S2.
P_sem Mc MS Mq MV (P_asserts S1) /\ P_sem Mc MS Mq MV (P_asserts S2) ==>
P_sem Mc MS Mq MV (P_refines (S_par S1 S2) (S_conj S1 S2))
Proof
rw [P_sem,S_sem,downward_closed,double_intersection,SUBSET_DEF] >>
METIS_TAC [SUBSET_DEF,INTER_SUBSET]
QED
Theorem proposition_7a:
!Mc MS Mq MV S1 S2. P_sem Mc MS Mq MV (P_refines (S_par S1 (S_assume S1 S2)) S2)
Proof
rw [P_sem,S_sem,double_intersection,SUBSET_DEF] >> METIS_TAC [INTER_COMM]
QED
Theorem proposition_7a_alt:
!Mc MS Mq MV S1 S2 c1 c2.
P_sem Mc MS Mq MV (P_implements c1 S1) /\
P_sem Mc MS Mq MV (P_implements c2 (S_assume S1 S2)) ==>
P_sem Mc MS Mq MV (P_implements (c_comp c1 c2) S2)
Proof
rw [P_sem,c_sem,S_sem] >> METIS_TAC [INTER_COMM]
QED
Theorem proposition_7b:
!Mc MS Mq MV S1 S2 c2 q1.
q1 NOTIN fv_c c2 ==>
(P_sem Mc MS Mq MV
(P_forall_c q1
(P_implies (P_implements (c_var q1) S1)
(P_implements (c_comp (c_var q1) c2) S2)))) ==>
P_sem Mc MS Mq MV (P_implements c2 (S_assume S1 S2))
Proof
rw [P_sem,c_sem,S_sem,APPLY_UPDATE_THM] >>
`(b' INTER c_sem Mc Mq c2) IN S_sem MS MV S2` suffices_by METIS_TAC [INTER_COMM] >>
`c_sem Mc Mq c2 = c_sem Mc ((q1 =+ b') Mq) c2`
suffices_by METIS_TAC [] >>
match_mp_tac fv_c_eq_c_sem >>
rw [APPLY_UPDATE_THM] >> fs []
QED
Theorem proposition_7b_alt:
!Mc MS Mq MV S1 S2 c2.
P_sem Mc MS Mq MV (P_implements c2 S2) ==>
P_sem Mc MS Mq MV (P_asserts S2) ==>
P_sem Mc MS Mq MV (P_implements c2 (S_assume S1 S2))
Proof
rw [P_sem,S_sem,downward_closed] >>
METIS_TAC [INTER_SUBSET]
QED
Theorem proposition_8:
!MS MV S. S_sem MS MV S = S_sem MS MV (S_assume S_top S)
Proof
rw [S_sem]
QED
Theorem proposition_9:
!Mc MS Mq MV S1 S2.
P_sem Mc MS Mq MV (P_asserts S2) ==>
P_sem Mc MS Mq MV (P_asserts (S_assume S1 S2))
Proof
rw [P_sem,downward_closed,S_sem] >>
`e INTER b' IN S_sem MS MV S2` by METIS_TAC [] >>
`e' INTER b' SUBSET e INTER b'` suffices_by METIS_TAC [] >>
fs [SUBSET_DEF]
QED
Theorem compat_comp:
!Mc MS Mq MV c1 c2.
P_sem Mc MS Mq MV (P_implements (c_comp c1 c2) S_compat) <=>
(c_sem Mc Mq c1) INTER (c_sem Mc Mq c2) <> {}
Proof
rw [] >> EQ_TAC >> rw [P_sem,c_sem,S_sem]
QED
Theorem spec_holds_system_sound:
!Mc MS Mq MV. spec_system_sound spec_holds Mc MS Mq MV
Proof
strip_tac >> strip_tac >> strip_tac >> strip_tac >>
`!G P. spec_holds G P ==>
(!P0. P0 IN G ==> P_sem Mc MS Mq MV P0) ==> P_sem Mc MS Mq MV P`
suffices_by METIS_TAC [spec_system_sound] >>
ho_match_mp_tac spec_holds_ind >> rw [] >| [
(* re *)
METIS_TAC [proposition_2a],
(* am *)
METIS_TAC [proposition3_b],
(* conji *)
METIS_TAC [proposition_4a],
(* conje1 *)
METIS_TAC [proposition_4b],
(* conje2 *)
METIS_TAC [proposition_4b_alt],
(* ce *)
METIS_TAC [proposition_7a_alt],
(* ci *)
METIS_TAC [proposition_7b],
(* cre *)
METIS_TAC [proposition_4b_alt,proposition_2a,proposition_4a]
]
QED
Theorem contract_compositionality_sem_two:
!Mc MS Mq MV S1 S2 A1 A2 G1 G2 q1 q2.
q1 <> q2 /\
(P_sem Mc MS Mq MV
(P_forall_c q1 (P_forall_c q2
(P_implies
(P_and (P_implements (c_var q1) (S_assume A1 G1)) (P_implements (c_var q2) (S_assume A2 G2)))
(P_implements (c_comp (c_var q1) (c_var q2)) (S_assume S1 S2)))))) ==>
P_sem Mc MS Mq MV (P_refines (S_par (S_assume A1 G1) (S_assume A2 G2)) (S_assume S1 S2))
Proof
rw [P_sem,c_sem,APPLY_UPDATE_THM] >>
rw [SUBSET_DEF] >>
`?a b. x = a INTER b /\ a IN S_sem MS MV (S_assume A1 G1) /\ b IN S_sem MS MV (S_assume A2 G2)`
by METIS_TAC [S_sem_IN_par_IN] >>
rw [] >> Cases_on `q1 = q2` >> fs []
QED
Theorem contract_compositionality_system_two:
!R Mc MS Mq MV.
spec_system_sound R Mc MS Mq MV ==>
!G. (!P0. P0 IN G ==> P_sem Mc MS Mq MV P0) ==>
!S1 S2 A1 A2 G1 G2 q1 q2.
q1 <> q2 ==>
R G (P_forall_c q1 (P_forall_c q2 (P_implies
(P_and (P_implements (c_var q1) (S_assume A1 G1)) (P_implements (c_var q2) (S_assume A2 G2)))
(P_implements (c_comp (c_var q1) (c_var q2)) (S_assume S1 S2))))) ==>
P_sem Mc MS Mq MV (P_refines (S_par (S_assume A1 G1) (S_assume A2 G2)) (S_assume S1 S2))
Proof
rw [spec_system_sound] >>
match_mp_tac contract_compositionality_sem_two >>
Q.EXISTS_TAC `q1` >> Q.EXISTS_TAC `q2` >>
rw [] >> METIS_TAC []
QED
val _ = export_theory ();