-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathip.py
400 lines (363 loc) · 15.3 KB
/
ip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
from __future__ import print_function
from __future__ import division
import argparse
import numpy as np
from scipy.spatial.distance import cosine
import time
import cPickle as pickle
import math
from gurobipy import *
from cluster import error
import utils
def nontrivial_constraints(m):
# Constraints to make ultrametric non-trivial
n = m._n
# Get variables
flag_spreading = False
flag_hereditary = False
for t in xrange(1, n):
visited = [0]*n
for i in xrange(1, n):
# t iterates over the sizes of the set S
pre_var_list = [m.getVarByName('x_' + str(j) + '_' + str(i) + '_' + str(t)) for j in xrange(i)]
post_var_list = [m.getVarByName('x_' + str(i) + '_' + str(j) + '_' + str(t)) for j in xrange(i + 1, n)]
pre_var_sol = map(lambda x: int(round(x)), m.cbGetSolution(pre_var_list))
post_var_sol = map(lambda x: int(round(x)), m.cbGetSolution(post_var_list))
# count + 1 = |S| in the spreading constraint, \sum x^t_ij \ge count - t
pre_zero_set = set([j for j in xrange(i) if pre_var_sol[j] == 0])
post_zero_set = set([j for j in xrange(i + 1, n) if post_var_sol[j - i - 1] == 0])
count = len(pre_zero_set) + len(post_zero_set)
# Delete the lists
del pre_var_list
del post_var_list
del pre_var_sol
del post_var_sol
# Spreading constraint
flag_spreading = spreading_constraint(m, pre_zero_set, post_zero_set, i, t)
# Hereditary constraint
flag_hereditary = hereditary_constraint(m, pre_zero_set, post_zero_set, i, t, visited)
# Delete the sets
del pre_zero_set
del post_zero_set
return flag_spreading or flag_hereditary
def hereditary_constraint(m, pre_zero_set, post_zero_set, i, t, visited):
# Apply hereditary constraint
count = len(pre_zero_set) + len(post_zero_set)
h_constr_name = 'hereditary.constr'
flag = False
if not visited[i] and count + 1 < t:
visited[i] = 1
for j in pre_zero_set:
visited[j] = 1
vname = 'x_' + str(j) + '_' + str(i) + '_' + str(count + 1)
v = m.getVarByName('x_' + str(j) + '_' + str(i) + '_' + str(count + 1))
val = m.cbGetSolution(v)
vtname = 'x_' + str(j) + '_' + str(i) + '_' + str(t)
vt = m.getVarByName(vtname)
if val:
with open(h_constr_name, 'a') as f:
f.write(vname + ',' + vtname + '\n')
m.cbLazy(v <= vt)
flag = True
return flag
def add_hereditary_constraints(m):
# Add hereditary constraint from file for debugging purposes
h_constr_name = 'hereditary.constr'
with open(h_constr_name, 'rb') as f:
constraints = [x.strip('\n').split(',') for x in f.readlines()]
for c in constraints:
cname = 'h_constr_' + c[0] + '_' + c[1]
v = m.getVarByName(c[0])
vt = m.getVarByName(c[1])
m.addConstr(v <= vt, name=cname)
m.update()
def spreading_constraint(m, pre_zero_set, post_zero_set, i, t):
# Apply spreading constraint
count = len(pre_zero_set) + len(post_zero_set)
s_constr_name = 'spreading.constr'
flag = False
if count >= t:
expr = 0
cname = str()
for j in pre_zero_set:
vname = 'x_' + str(j) + '_' + str(i) + '_' + str(t)
expr += m.getVarByName(vname)
cname += vname + ','
for j in post_zero_set:
vname = 'x_' + str(i) + '_' + str(j) + '_' + str(t)
expr += m.getVarByName(vname)
cname += vname + ','
m.cbLazy(expr >= count + 1 - t)
cname += str(count + 1 - t)
with open(s_constr_name, 'a') as f:
f.write(cname + '\n')
flag = True
return flag
def add_spreading_constraints(m):
# Add spreading constraints from file for debugging purposes
s_constr_name = 'spreading.constr'
with open(s_constr_name, 'rb') as f:
constraints = [x.strip('\n').split(',') for x in f.readlines()]
for c in constraints:
expr = 0
for i in xrange(len(c) - 1):
expr += m.getVarByName(c[i])
m.addConstr(expr >= int(c.pop()))
m.update()
def triangle_constraints(m):
# Lazy triangle inequality
n = m._n
d = {}
flag = False
for i in xrange(n):
for j in xrange(i + 1, n):
for t in xrange(1, n):
v_ijt = m.getVarByName('x_' + str(i) + '_' + str(j) + '_' + str(t))
x_ijt = m.cbGetSolution(v_ijt)
for k in xrange(j + 1, n):
v_ikt = m.getVarByName('x_' + str(i) + '_' + str(k) + '_' + str(t))
v_jkt = m.getVarByName('x_' + str(j) + '_' + str(k) + '_' + str(t))
x_ikt = m.cbGetSolution(v_ikt)
x_jkt = m.cbGetSolution(v_jkt)
if int(round(x_ijt)) > int(round(x_ikt)) + int(round(x_jkt)):
flag = True
m.cbLazy(v_ijt <= v_ikt + v_jkt)
if int(round(x_ikt)) > int(round(x_ijt)) + int(round(x_jkt)):
flag = True
m.cbLazy(v_ikt <= v_ijt + v_jkt)
if int(round(x_jkt)) > int(round(x_ijt)) + int(round(x_ikt)):
flag = True
m.cbLazy(v_jkt <= v_ijt + v_ikt)
return flag
def callback_function(m, where):
# First cut off triangle, then spreading
if where == GRB.Callback.MIPSOL:
triangle_constraints(m)
nontrivial_constraints(m)
def add_variables(data, similarity, target, m, f):
# Add variables to m
print('Adding variables to model')
v = {}
w = {}
start = time.time()
counter = 0
n = m._n
initial_solution = {}
for i in range(n):
for j in range(i + 1, n):
for t in range(1, n):
# w[i, j, t] is the kernel function
w[i, j, t] = (f(t) - f(t-1)) * similarity(i, j)
vname = 'x_' + str(i) + '_' + str(j) + '_' + str(t)
v[i, j, t] = m.addVar(lb=0.0, ub=1.0, obj=w[i, j, t], vtype=GRB.BINARY, name=vname)
counter += 1
if target[i] == target[j]:
if t <= 9:
initial_solution[i, j, t] = 1
else:
initial_solution[i, j, t] = 1
else:
if t <= 29:
initial_solution[i, j, t] = 1
else:
initial_solution[i, j, t] = 1
m.update()
for i in range(n):
for j in range(i + 1, n):
for t in range(1, n):
v[i, j, t].start = initial_solution[i, j, t]
m.update()
m._vars = v
m._obj = w
print('Adding initial starting solution')
end = time.time()
print('Time to add variables = {0:.2f}s'.format(end - start))
def add_layer_constraints(m):
# Add layer constraints serially
print('Adding layer constraints')
start = time.time()
n = m._n
for t in range(1, n - 1):
for i in range(n):
for j in range(i + 1, n):
cname = 'layer_' + str(i) + '_' + str(j) + '_' + str(t)
m.addConstr(m._vars[i, j, t] - m._vars[i, j, t + 1] >= 0, name=cname)
m.update()
end = time.time()
print('Time to add layer inequalities = {0:2f}s'.format(end - start))
def init_model(data, target, kernel, f):
# Initiliaze Gurobi model
m = Model()
m._n = data.shape[0]
# Add variables
add_variables(data, target, m, kernel, f)
# Add layer constraints
add_layer_constraints(m)
# Add constraints from file
# add_spreading_constraints(m)
# add_hereditary_constraints(m)
m.modelSense = GRB.MINIMIZE
m.params.LazyConstraints = 1
return m
def get_ultrametric(m, f):
# Recover ultrametric from binary solution
d = {}
n = m._n
for i in range(n):
for j in range(i + 1, n):
d[i, j] = 0
for t in range(1, n):
v = m.getVarByName('x_{0}_{1}_{2}'.format(i, j, t))
d[i, j] += (f(t) - f(t-1)) * int(round(v.X))
return d
def check_binary_triangle(m):
# Check if triangle inequality is satisfied by every binary solution
n = m._n
for t in range(1, n):
for i in range(n - 2):
for j in range(i + 1, n - 1):
for k in range(j + 1, n):
v_ij = m.getVarByName('x_' + str(i) + '_' + str(j) + '_' + str(t))
v_jk = m.getVarByName('x_' + str(j) + '_' + str(k) + '_' + str(t))
v_ik = m.getVarByName('x_' + str(i) + '_' + str(k) + '_' + str(t))
if int(round(v_ik.X)) > max(int(round(v_ij.X)), int(round(v_jk.X))):
print('i = {0}, j = {1}, k = {2}, t = {3}'.format(i, j, k, t))
print('v_ij = {0:2f}, v_jk = {1:2f}. v_ik = {2:2f}'.format(v_ij.X, v_jk.X, v_ik.X))
return False
if int(round(v_ij.X)) > max(int(round(v_ik.X)), int(round(v_jk.X))):
print('i = {0}, j = {1}, k = {2}, t = {3}'.format(i, j, k, t))
print('v_ij = {0:2f}, v_jk = {1:2f}. v_ik = {2:2f}'.format(v_ij.X, v_jk.X, v_ik.X))
return False
if int(round(v_jk.X)) > max(int(round(v_ij.X)), int(round(v_ik.X))):
print('i = {0}, j = {1}, k = {2}, t = {3}'.format(i, j, k, t))
print('v_ij = {0:2f}, v_jk = {1:2f}. v_ik = {2:2f}'.format(v_ij.X, v_jk.X, v_ik.X))
return False
return True
def main(data, target, args):
model_name = 'model_{0}_{1}_{2}.lp'.format(args.data, args.kernel, args.function)
param_name = 'model_{0}_{1}_{2}.prm'.format(args.data, args.kernel, args.function)
solution_name = 'solution_{0}_{1}_{2}.sol'.format(args.data, args.kernel, args.function)
ultrametric_name = 'ultrametric_{0}_{1}_{2}'.format(args.data, args.kernel, args.function)
var_name = 'var_{0}_{1}_{2}_{3}.pkl'.format(args.data, args.data, args.kernel, args.function)
obj_name = 'obj_{0}_{1}_{2}_{3}.pkl'.format(args.data, args.data, args.kernel, args.function)
laminar_name = 'laminar_{0}_{1}_{2}.pkl'.format(args.data, args.kernel, args.function)
tree_name = 'ip_tree_{0}_{1}_{2}.pdf'.format(args.data, args.kernel, args.function)
if args.kernel == 'cosine':
y = pdist(data, metric='cosine')
# Make condensed distance matrix into redundant form
similarity = 1 - y
similarity = squareform(similarity)
if args.kernel == 'gaussian':
y = pdist(data, metric='sqeuclidean')
s = 1
y = 1 - np.exp(-(y**2)/(2*s ** 2))
# Make condensed distance matrix into redundant form
similarity = 1 - y
similarity = squareform(similarity)
if args.kernel == 'sqeuclidean':
y = pdist(data, metric='sqeuclidean')
similarity = - y
similarity = squareform(similarity)
if args.function == 'linear':
m = init_model(data, similarity, target, utils.linear)
elif args.function == 'quadratic':
m = init_model(data, similarity, target, utils.quadratic)
elif args.function == 'cubic':
m = init_model(data, similarity, target, utils.cubic)
elif args.function == 'exponential':
m = init_model(data, similarity, target, utils.exponential)
elif args.function == 'logarithm':
m = init_model(data, similarity, target, utils.logarithm)
else:
exit(0)
print('Saving model')
m.write(model_name)
# Use concurrent optimization
m.params.method = 3
# Limit memory
m.params.NodeFileStart = 10
# Limit number of threads
m.params.Threads = args.num_threads
# Set MIP Focus
m.params.MIPFocus = 3
# Tune parameters
print('Tuning parameters')
m.params.tuneResults = 1
m.tune()
if m.tuneResultCount > 0:
m.getTuneResult(0)
# Set MIP Gap
m.params.MIPGap = 0.01
print('Saving model parameters')
m.write(param_name)
print('Saving objective functions')
with open(obj_name, 'wb') as f:
pickle.dump(m._obj, f)
print('Optimizing over model')
m._n = data.shape[0]
m.optimize(callback_function)
if m.status == GRB.Status.OPTIMAL:
# Write solution
m.write(solution_name)
print('Check binary triangle for solution: ', check_binary_triangle(m))
# Get ultrametric
if args.function == 'linear':
d = get_ultrametric(m, utils.linear)
utils.inverse_ultrametric(d, utils.inverse_linear)
elif args.function == 'quadratic':
d = get_ultrametric(m, utils.quadratic)
utils.inverse_ultrametric(d, utils.inverse_quadratic)
elif args.function == 'cubic':
d = get_ultrametric(m, utils.cubic)
utils.inverse_ultrametric(d, utils.inverse_cubic)
elif args.function == 'exponential':
d = get_ultrametric(m, utils.exponential)
utils.inverse_ultrametric(d, utils.inverse_exponential)
elif args.function == 'logarithm':
d = get_ultrametric(m, utils.logarithm)
utils.inverse_ultrametric(d, utils.inverse_logarithm)
print('d = ', d)
print('Check ultrametric: ', utils.check_ultrametric(d))
cost = utils.get_cost(m, d)
print('Cost of hierarchy = ', cost)
total_obj = utils.get_total(m)
print('Total cost = ', total_obj)
print('Scaled cost = ', cost/total_obj)
# Complete ultrametric
utils.complete_ultrametric(d)
# Build laminar list from d
print('building laminar list')
L = utils.build_laminar_list(d)
print('L = ', L)
print('Check laminar: ', utils.test_laminar(L))
labels = [1]*m._n
one_target = map(lambda x: x + 1, target)
# Prune laminar list
pruned = utils.prune(L, one_target, args.prune, labels)
print('Error on pruning: ', pruned[0])
with open(ultrametric_name, 'wb') as f:
pickle.dump(d, f)
# Build hierarchy
print('Building hierarchy')
G = utils.build_hierarchy(d)
# Draw hierarchy
print('Drawing hierarchy to ', tree_name)
utils.draw(G, target, m._n, tree_name)
elif m.status == GRB.Status.INFEASIBLE:
# Compute IIS, for debugging purposes
m.computeIIS()
m.write('infeasible.ilp')
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--data', help='Data file', required=True)
parser.add_argument('-l', '--label', type=int, default=0, help='Column of labels')
parser.add_argument('-k', '--kernel', type=str, default='linear', help='Type of kernel')
parser.add_argument('-f', '--function', type=str, default='linear', help='linear, quadratic, cubic, exponential, logarithm')
parser.add_argument('-n', '--num_threads', type=int, default=1, help='Number of threads')
parser.add_argument('-p', '--prune', type=int, required=True, help='Number of flat clusters')
parser.add_argument('-x', '--sample', type=int, default=-1, help='Num samples')
args = parser.parse_args()
data, target = utils.prepare_data(args.data, args.label)
if args.sample > 0:
data, target = utils.sample(data, target, args.sample)
main(data, target, args)