-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththeoremProver.ml
147 lines (131 loc) · 5.28 KB
/
theoremProver.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
(* Poling: Proof Of Linearizability Generator
* Poling is built on top of CAVE and shares the same license with CAVE
* See LICENSE.txt for license.
* Contact: He Zhu, Department of Computer Science, Purdue University
* Email: zhu103@purdue.edu
*)
(*
* Copyright © 2008 The Regents of the University of California. All rights reserved.
*
* Permission is hereby granted, without written agreement and without
* license or royalty fees, to use, copy, modify, and distribute this
* software and its documentation for any purpose, provided that the
* above copyright notice and the following two paragraphs appear in
* all copies of this software.
*
* IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY
* FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
* ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN
* IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*
* THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION
* TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*
*)
(* Common theorem prover interface *)
module P = Predicate
(********************************************************************************)
(************************** Rationalizing Division ******************************)
(********************************************************************************)
let rec fixdiv p =
let expr_isdiv =
function P.Binop(_, P.Div, _) -> true
| _ -> false in
let pull_const =
function P.PInt(i) -> i
| _ -> 1 in
let pull_divisor =
function P.Binop(_, P.Div, d1) ->
pull_const d1
| _ -> 1 in
let rec apply_mult m e =
match e with
P.Binop(n, P.Div, P.PInt(d)) ->
(*let _ = assert ((m/d) * d = m) in*)
P.Binop(P.PInt(m/d), P.Times, n)
| P.Binop(e1, rel, e2) ->
P.Binop(apply_mult m e1, rel, apply_mult m e2)
| P.PInt(i) -> P.PInt(i*m)
| e -> P.Binop(P.PInt(m), P.Times, e)
in
let rec pred_isdiv =
function P.Atom(e, _, e') -> (expr_isdiv e) || (expr_isdiv e')
| P.Iff (px, q) -> expr_isdiv px || pred_isdiv q
| P.And(p, p') -> (pred_isdiv p) || (pred_isdiv p')
| P.Or(p, p') -> (pred_isdiv p) || (pred_isdiv p')
| P.True -> false
| P.Not p -> pred_isdiv p
| P.In (px, qx) -> false
| P.Recpred _ -> false in
let calc_cm e1 e2 =
pull_divisor e1 * pull_divisor e2 in
if pred_isdiv p then
match p with
P.Atom(e, r, e') ->
let m = calc_cm e e' in
let e'' = P.Binop(e', P.Minus, P.PInt(1)) in
let bound (e, r, e', e'') =
P.And(P.Atom(apply_mult m e, P.Gt, apply_mult m e''),
P.Atom(apply_mult m e, P.Le, apply_mult m e')) in
(match (e, r, e') with
(P.Var v, P.Eq, e') ->
bound (e, r, e', e'')
| (P.PInt v, P.Eq, e') ->
bound (e, r, e', e'')
| _ -> p)
| P.And(p1, p2) ->
let p1 = if pred_isdiv p1 then fixdiv p1 else p1 in
let p2 = if pred_isdiv p2 then fixdiv p2 else p2 in
P.And(p1, p2)
| P.Or(p1, p2) ->
let p1 = if pred_isdiv p1 then fixdiv p1 else p1 in
let p2 = if pred_isdiv p2 then fixdiv p2 else p2 in
P.Or(p1, p2)
| P.Not p1 -> P.Not(fixdiv p1)
| p -> p
else p
(********************************************************************************)
(*********************** Memo tables and Stats Counters ************************)
(********************************************************************************)
let nb_push = ref 0
let nb_queries = ref 0
let nb_cache_miss = ref 0
let qcachet: (string * string, bool) Hashtbl.t = Hashtbl.create 1009
(********************************************************************************)
(************************************* API **************************************)
(********************************************************************************)
(* API *)
let print_stats () =
TheoremProverYices.Prover.print_stats ();
Misc.pp
"@[Prover stats:@ %d@ pushes,@ %d@ queries,@ %d@ cache misses\n@]"
!nb_push !nb_queries !nb_cache_miss; flush stdout
(* API *)
let reset () =
Hashtbl.clear qcachet;
nb_push := 0;
nb_queries := 0;
nb_cache_miss := 0
(* API Usage Pattern: implies must be followed by finish *)
let implies p =
let _ = incr nb_push in
let p = fixdiv p in
let check_yi = Bstats.time "YI implies(1)" TheoremProverYices.Prover.implies p in
fun q ->
let q = incr nb_queries; Bstats.time "fixdiv" fixdiv q in
Bstats.time "YI implies(2)" check_yi q
let finish () =
TheoremProverYices.Prover.finish ()
(*
let test () =
let var1 = Exp.Id.gensym_str "a" in
let var2 = Exp.Id.gensym_str "b" in
let p1 = Predicate.Atom ((Predicate.Var var1), Predicate.Eq, (Predicate.Var var2)) in
let p2 = Predicate.Atom ((Predicate.Var var1), Predicate.Ge, (Predicate.Var var2)) in
let result = implies p2 p1 in
let _ = finish () in
Misc.pp "@.testing theorem prover result is %b@." result*)