-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathmain_FAR.m
executable file
·133 lines (112 loc) · 5.45 KB
/
main_FAR.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
function main_FAR(code, A, E, L, min_sum, target_false_alarms, seed)
% main_FAR calculates False Alarm Rate (FAR) for polar codes.
% main_FAR(code, A, E, L, min_sum, target_false_alarms, seed) calculates
% the FAR.
%
% code should be a string. This identifies which encoder and decoder
% functions to call. For example, if code is 'custom1', then the
% functions custom1_encoder and custom1_decoder will be called. The
% encoder function should have a format f = custom1_encoder(a, E). The
% decoder function should have a format
% a_hat = custom1_decoder(f_tilde, A, L, min_sum). Refer to these
% functions for explanations of their inputs and outputs. Suitable values
% for code include 'PBCH', 'PDCCH, 'PUCCH' and 'custom1'.
%
% A should be an integer row vector. Each element specifies the number of
% bits in each set of simulated information bit sequences, before CRC and
% other redundant bits are included.
%
% E should be an integer row vector. Each element of E specifies one
% encoded block length to simulate, where E is the number of bits in each
% encoded bit sequence.
%
% L should be a scalar integer. It specifies the list size to use during
% Successive Cancellation List (SCL) decoding.
%
% min_sum shoular be a scalar logical. If it is true, then the SCL
% decoding process will be completed using the min-sum approximation.
% Otherwise, the log-sum-product will be used. The log-sum-product gives
% better error correction capability than the min-sum, but it has higher
% complexity.
%
% target_false_alarms should be an integer scalar. The simulation of each
% encoded block length will continue until this number of false
% alarms have been observed. A value of 100 is sufficient to obtain
% reliable FAR results for most values of A. Higher values will give
% more reliable results, at the cost of requiring longer simulations.
%
% seed should be an integer scalar. This value is used to seed the random
% number generator, allowing identical results to be reproduced by using
% the same seed. When running parallel instances of this simulation,
% different seeds should be used for each instance, in order to collect
% different results that can be aggregated together.
%
% See also MAIN_BLER_VS_SNR and MAIN_SNR_VS_A
%
% Copyright © 2017 Robert G. Maunder. This program is free software: you
% can redistribute it and/or modify it under the terms of the GNU General
% Public License as published by the Free Software Foundation, either
% version 3 of the License, or (at your option) any later version. This
% program is distributed in the hope that it will be useful, but WITHOUT
% ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
% FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
% more details.
% Default values
if nargin == 0
code = 'PUCCH';
A = [16 32 64 128 256 512 1024];
E = [54 108 216 432 864 1728 3456 6912 13824];
L = 1;
min_sum = true;
target_false_alarms = 10;
seed = 0;
end
% Open a file to save the results into.
filename = ['results/FAR_',code,'_',num2str(L),'_',num2str(min_sum),'_',num2str(target_false_alarms),'_',num2str(seed)];
fid = fopen([filename,'.txt'],'w');
if fid == -1
error('Could not open %s.txt',filename);
end
% Seed the random number generator
rng(seed);
fprintf(" A E FAs blocks FAR\n");
% Consider each information block length in turn
for A_index = 1:length(A)
% Consider each encoded block length in turn
for E_index = 1:length(E)
% Counters to store the number of bits and errors simulated so far
block_count=0;
false_alarm_count=0;
chars_to_erase=0;
% Skip any encoded block lengths that generate errors
try
% Continue the simulation until enough block errors have been simulated
while false_alarm_count(end) < target_false_alarms
% Use Gaussian distributed random LLRs
f_tilde = randn(1,E(E_index));
% Perform polar decoding
a_hat = feval([code, '_decoder'],f_tilde,A(A_index),L,min_sum);
% Accumulate the number of blocks that have been simulated
% so far
block_count = block_count + 1;
% If the CRC is satisfied, then we have a false alarm
if length(a_hat) == A(A_index)
false_alarm_count = false_alarm_count + 1;
fprintf(repmat('\b',1,chars_to_erase));
msg = sprintf('%4d %10d %10d %10d %.3e\n', A(A_index), E(E_index), false_alarm_count, block_count, false_alarm_count/block_count);
fprintf(msg);
chars_to_erase = numel(msg);
end
end
fprintf(fid,'%d\t%d\t%e\n',A(A_index),E(E_index),false_alarm_count/block_count);
catch ME
if strcmp(ME.identifier, 'polar_3gpp_matlab:UnsupportedBlockLength')
warning('polar_3gpp_matlab:UnsupportedBlockLength','%s does not support the combination of block lengths A=%d and E=%d. %s',code,A(A_index),E(E_index), getReport(ME, 'basic', 'hyperlinks', 'on' ));
continue
else
rethrow(ME);
end
end
end
end
fclose(fid);