-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrain_AES_aug.py
129 lines (105 loc) · 5.01 KB
/
train_AES_aug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
import time
import argparse
import random
import numpy as np
import tensorflow as tf
from configs.configs import Configs
from models.baselines_multitask import build_AES_aug_multitask
from utils.read_data import read_essays_words_flat, read_word_vocab
from utils.general_utils import get_scaled_down_scores, pad_flat_text_sequences, load_word_embedding_dict, \
build_embedd_table
from evaluators.multitask_evaluator_all_attributes import Evaluator as AllAttEvaluator
def main():
parser = argparse.ArgumentParser(description="AES_aug model")
parser.add_argument('--test_prompt_id', type=int, default=1, help='prompt id of test essay set')
parser.add_argument('--seed', type=int, default=12, help='set random seed')
args = parser.parse_args()
test_prompt_id = args.test_prompt_id
seed = args.seed
np.random.seed(seed)
tf.random.set_seed(seed)
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
print("Test prompt id is {} of type {}".format(test_prompt_id, type(test_prompt_id)))
print("Seed: {}".format(seed))
configs = Configs()
data_path = configs.DATA_PATH
train_path = data_path + str(test_prompt_id) + '/train.pk'
dev_path = data_path + str(test_prompt_id) + '/dev.pk'
test_path = data_path + str(test_prompt_id) + '/test.pk'
features_path = configs.FEATURES_PATH
readability_path = configs.READABILITY_PATH
vocab_size = configs.VOCAB_SIZE
epochs = configs.EPOCHS
batch_size = configs.BATCH_SIZE
pretrained_embedding = configs.PRETRAINED_EMBEDDING
embedding_path = configs.EMBEDDING_PATH
read_configs = {
'train_path': train_path,
'dev_path': dev_path,
'test_path': test_path,
'features_path': features_path,
'readability_path': readability_path,
'vocab_size': vocab_size
}
word_vocab = read_word_vocab(read_configs)
train_data, dev_data, test_data = read_essays_words_flat(read_configs, word_vocab)
if pretrained_embedding:
embedd_dict, embedd_dim, _ = load_word_embedding_dict(embedding_path)
embedd_matrix = build_embedd_table(word_vocab, embedd_dict, embedd_dim, caseless=True)
embed_table = [embedd_matrix]
else:
embed_table = None
max_essay_len = max(train_data['max_essay_len'], dev_data['max_essay_len'], test_data['max_essay_len'])
print('max essay length: {}'.format(max_essay_len))
train_data['y_scaled'] = get_scaled_down_scores(train_data['data_y'], train_data['prompt_ids'])
dev_data['y_scaled'] = get_scaled_down_scores(dev_data['data_y'], dev_data['prompt_ids'])
test_data['y_scaled'] = get_scaled_down_scores(test_data['data_y'], test_data['prompt_ids'])
X_train = pad_flat_text_sequences(train_data['words'], max_essay_len)
X_dev = pad_flat_text_sequences(dev_data['words'], max_essay_len)
X_test = pad_flat_text_sequences(test_data['words'], max_essay_len)
X_train_linguistic_features = np.array(train_data['features_x'])
X_dev_linguistic_features = np.array(dev_data['features_x'])
X_test_linguistic_features = np.array(test_data['features_x'])
X_train_readability = np.array(train_data['readability_x'])
X_dev_readability = np.array(dev_data['readability_x'])
X_test_readability = np.array(test_data['readability_x'])
Y_train = np.array(train_data['y_scaled'])
Y_dev = np.array(dev_data['y_scaled'])
Y_test = np.array(test_data['y_scaled'])
print('================================')
print('X_train: ', X_train.shape)
print('X_train_readability: ', X_train_readability.shape)
print('X_train_ling: ', X_train_linguistic_features.shape)
print('Y_train: ', Y_train.shape)
print('================================')
print('X_dev: ', X_dev.shape)
print('X_dev_readability: ', X_dev_readability.shape)
print('X_dev_ling: ', X_dev_linguistic_features.shape)
print('Y_dev: ', Y_dev.shape)
print('================================')
print('X_test: ', X_test.shape)
print('X_test_readability: ', X_test_readability.shape)
print('X_test_ling: ', X_test_linguistic_features.shape)
print('Y_test: ', Y_test.shape)
print('================================')
model = build_AES_aug_multitask(len(word_vocab), max_essay_len, configs, embed_table,
Y_train.shape[1])
dev_features_list = [X_dev]
test_features_list = [X_test]
evaluator = AllAttEvaluator(test_prompt_id, dev_data['prompt_ids'], test_data['prompt_ids'], dev_features_list,
test_features_list, Y_dev, Y_test)
evaluator.evaluate(model, -1, print_info=True)
for ii in range(epochs):
print('Epoch %s/%s' % (str(ii + 1), epochs))
start_time = time.time()
model.fit(
X_train,
Y_train, batch_size=batch_size, epochs=1, verbose=0, shuffle=True)
tt_time = time.time() - start_time
print("Training one epoch in %.3f s" % tt_time)
evaluator.evaluate(model, ii + 1)
evaluator.print_final_info()
if __name__ == '__main__':
main()