-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaugmented_lagrangian.py
94 lines (74 loc) · 2.86 KB
/
augmented_lagrangian.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import approx_fprime
from scipy.optimize import golden
import scipy.linalg as la
"""
min (x1^4 - 2x1^2 x2 + x1^2 + x1 x2^2 - 2x1 + 4)
subject to:
0.25x1^2 + 0.75x2^2 <= 1
2x1^2 + x2^2 = 2
x1,x2 belongs to 0 to 5
"""
def objective_function(x):
return x[0]**4 - 2*x[0]**2*x[1] + x[0]**2 + x[0]*x[1]**2 - 2*x[0] + 4
def inequality_constraint(x):
return 0.25*x[0]**2 + 0.75*x[1]**2 - 1
def equality_constraint(x):
return 2*x[0]**2 + x[1]**2 - 2
def augmented_lagrangian(x, rho, lambda_):
return objective_function(x) + rho/2 * max(0, inequality_constraint(x))**2 + lambda_ * equality_constraint(x)
def augmented_lagrangian_derivative(x, rho, lambda_):
df_dx1 = 4*x[0]**3 - 4*x[0]*x[1] + 2*x[0] - 2 + rho * x[0] * inequality_constraint(x) + 2 * lambda_ * x[0] * equality_constraint(x)
df_dx2 = -2*x[0]**2 + 2*x[1]*x[0] + 2 * rho * x[1] * inequality_constraint(x) + 2 * lambda_ * x[1] * equality_constraint(x)
return np.array([df_dx1, df_dx2])
def plot_solution_over_time(solutions):
solutions = np.array(solutions)
plt.figure(figsize=(8, 6))
plt.plot(solutions[:, 0], solutions[:, 1], marker='o', linestyle='-', color='b')
plt.scatter(solutions[-1, 0], solutions[-1, 1], color='r', label='Final Solution')
plt.title('Solution Over Time')
plt.xlabel('x1')
plt.ylabel('x2')
plt.legend()
plt.grid(True)
plt.show()
def minimize_augmented_lagrangian(x0, rho, lambda_, max_iter, epsilon, alpha1, alpha2):
for _ in range(max_iter):
# Calculate the augmented Lagrangian
L = augmented_lagrangian(x0, rho, lambda_)
g = augmented_lagrangian_derivative(x0, rho, lambda_)
d = -g
rho *= 1.1 # penalty
print(L, g)
iter_count = 0
max_inner_iter = 30
while alpha2 - alpha1 > epsilon and iter_count < max_inner_iter:
print(L)
alpha = (np.sqrt(5) + 1) / 2 * alpha1 - (np.sqrt(5) - 1) / 2 * alpha2
L_new = augmented_lagrangian(x0 + alpha * d, rho, lambda_)
if L_new <= L + alpha * 0.1 * g.dot(d):
alpha2 = alpha
else:
alpha1 = alpha
iter_count += 1
x0 = x0 + alpha * d
lambda_ = np.maximum(0, lambda_ + rho * equality_constraint(x0))
return x0, lambda_
start_point = np.array([-10, 10])
rho = 1.0
lambda_ = 0.1
max_iter = 50
epsilon = 0.02
alpha1, alpha2 = 0.00001, 1
optimal_solution, lambda_ = minimize_augmented_lagrangian(start_point, rho, lambda_, max_iter, epsilon, alpha1, alpha2)
print("Optimal Solution [x1, x2] =", optimal_solution) # <1
print("Cost Value:", objective_function(optimal_solution)) # 22
print("Lagrangian Multipliers:", lambda_) # 2
"""
min (x1^4 - 2x1^2 x2 + x1^2 + x1 x2^2 - 2x1 + 4)
subject to:
0.25x1^2 + 0.75x2^2 <= 1
2x1^2 + x2^2 = 2
x1,x2 belongs to 0 to 5
"""