-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval_pose.py
145 lines (107 loc) · 5 KB
/
eval_pose.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import torch
from torch.autograd import Variable
import cv2
import numpy as np
from pathlib import Path
import argparse
from tqdm import tqdm
from networks import ganvo
from utils import pose_vec2mat
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
import yaml
from utils import AttrDict
class test_framework_KITTI(object):
def __init__(self, root, sequence_set, seq_length=3, step=1):
self.root = root
self.img_files, self.poses, self.sample_indices = read_scene_data(self.root, sequence_set, seq_length, step)
def generator(self):
for img_list, pose_list, sample_list in zip(self.img_files, self.poses, self.sample_indices):
for snippet_indices in sample_list:
print(snippet_indices)
imgs = [cv2.imread(img_list[i]).astype(np.float32) for i in snippet_indices]
poses = np.stack(pose_list[i] for i in snippet_indices)
first_pose = poses[0]
poses[:,:,-1] -= first_pose[:,-1]
compensated_poses = np.linalg.inv(first_pose[:,:3]) @ poses
yield {'imgs': imgs,
'path': img_list[0],
'poses': np.array([compensated_poses[0],compensated_poses[2]])
}
def __iter__(self):
return self.generator()
def __len__(self):
return sum(len(imgs) for imgs in self.img_files)
@torch.no_grad()
def main():
with open('./config2.yaml') as fp:
config = yaml.load(fp)
args = AttrDict(config)
seq_length = 3
pose_net = ganvo(config=config).to(device)
pose_net.load_ckpts(config.pretrained_epoch)
dataset_dir = Path(args.dataset_dir)
framework = test_framework(dataset_dir, args.sequences, seq_length)
print('{} snippets to test'.format(len(framework)))
errors = np.zeros((len(framework), 2), np.float32)
if args.output_dir is not None:
output_dir = Path(args.output_dir)
output_dir.makedirs_p()
predictions_array = np.zeros((len(framework), seq_length, 3, 4))
for j, sample in enumerate(tqdm(framework)):
imgs = sample['imgs']
h,w,_ = imgs[0].shape
if (not args.no_resize) and (h != args.img_height or w != args.img_width):
imgs = [cv2.resize(img, (args.img_width, args.img_height)).astype(np.float32) for img in imgs]
imgs = [np.transpose(img, (2,0,1)) for img in imgs]
ref_imgs = []
for i, img in enumerate(imgs):
img = torch.from_numpy(img).unsqueeze(0)
img = ((img/255 - 0.5)/0.5).to(device)
if i == len(imgs)//2:
tgt_img = img
else:
ref_imgs.append(img)
pose_net.set_input(datum={"t0":ref_imgs[0],"t1":tgt_img,"t2":ref_imgs[1],"intrinsics":1.0})
pose_net.forward()
poses = pose_net.pose
poses = poses.cpu()[0]
poses = torch.cat([poses[:len(imgs)//2], torch.zeros(1,6).float(), poses[len(imgs)//2:]])
inv_transform_matrices = pose_vec2mat(poses, rotation_mode=args.rotation_mode).numpy().astype(np.float64)
rot_matrices = np.linalg.inv(inv_transform_matrices[:,:,:3])
tr_vectors = -rot_matrices @ inv_transform_matrices[:,:,-1:]
transform_matrices = np.concatenate([rot_matrices, tr_vectors], axis=-1)
first_inv_transform = inv_transform_matrices[0]
final_poses = first_inv_transform[:,:3] @ transform_matrices
final_poses[:,:,-1:] += first_inv_transform[:,-1:]
if args.output_dir is not None:
predictions_array[j] = final_poses
ATE, RE = compute_pose_error(sample['poses'], final_poses)
errors[j] = ATE, RE
mean_errors = errors.mean(0)
std_errors = errors.std(0)
error_names = ['ATE','RE']
print('')
print("Results")
print("\t {:>10}, {:>10}".format(*error_names))
print("mean \t {:10.4f}, {:10.4f}".format(*mean_errors))
print("std \t {:10.4f}, {:10.4f}".format(*std_errors))
if args.output_dir is not None:
np.save(output_dir/'predictions.npy', predictions_array)
def compute_pose_error(gt, pred):
RE = 0
print(gt.shape, pred.shape)
snippet_length = gt.shape[0]
scale_factor = np.sum(gt[:,:,-1] * pred[:,:,-1])/np.sum(pred[:,:,-1] ** 2)
ATE = np.linalg.norm((gt[:,:,-1] - scale_factor * pred[:,:,-1]).reshape(-1))
for gt_pose, pred_pose in zip(gt, pred):
# Residual matrix to which we compute angle's sin and cos
R = gt_pose[:,:3] @ np.linalg.inv(pred_pose[:,:3])
s = np.linalg.norm([R[0,1]-R[1,0],
R[1,2]-R[2,1],
R[0,2]-R[2,0]])
c = np.trace(R) - 1
# Note: we actually compute double of cos and sin, but arctan2 is invariant to scale
RE += np.arctan2(s,c)
return ATE/snippet_length, RE/snippet_length
if __name__ == '__main__':
main()