-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkeras-procgen.py
179 lines (152 loc) · 5.53 KB
/
keras-procgen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import collections
import os
import sys
import gym
import keras
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from tqdm import tqdm
import impala
import nature
os.environ["KERAS_BACKEND"] = "tensorflow"
if len(sys.argv) < 2:
print(f"Usage: {sys.argv[0]} <lr> [clip]")
sys.exit(1)
lr = float(sys.argv[1])
assert 0 < lr < 1e-2
if len(sys.argv) == 3:
clip = float(sys.argv[2])
assert 0.01 < clip
else:
clip = None
print(f"lr: {lr} clip: {clip}")
start_level = os.environ.get("START_LEVEL")
num_level = int(os.environ.get("NUM_LEVEL", "3"))
init_zero = os.environ.get("INIT_ZERO", "0") == "1"
env_name = os.environ.get("ENV_NAME", "fruitbot")
load_weights = os.environ.get("LOAD_WEIGHTS", "0") == "1"
use_impala = os.environ.get("USE_IMPALA", "0") == "1"
done_reward = float(os.environ.get("DONE_REWARD", "0"))
seed = 42
np.random.seed(seed)
tf.random.set_seed(seed)
suffix = f"td-{str(lr)}-{str(clip)}"
if use_impala:
suffix = f"imp-{suffix}"
else:
suffix = f"nat-{suffix}"
plt_file = f'{env_name}-{suffix}.png'
weights_file = f'{env_name}-{suffix}.weights.h5'
env_options = {
"id": f'procgen:procgen-{env_name}-v0',
"distribution_mode": "easy",
"render_mode": "rgb_array",
"rand_seed": seed,
"num_levels": num_level,
"use_sequential_levels": False,
"use_backgrounds": False,
"restrict_themes": True,
"use_monochrome_assets": True,
"use_generated_assets": False
}
if start_level:
env_options["start_level"] = int(start_level)
print(env_options)
env = gym.make(**env_options)
eps = np.finfo(np.float32).eps.item()
huber_loss = keras.losses.Huber()
optimizer = keras.optimizers.Adam(learning_rate=lr, clipnorm=clip)
max_episodes = 100_000
replay_size = 500
gamma = 0.999
entropy_weight = 0.01
num_actions = env.action_space.n
obs_space = env.observation_space.shape
if use_impala:
model = impala.impala_cnn(obs_space, num_actions)
else:
model = nature.build_model_ac(obs_space, num_actions, load_weights=False, init_zero=False)
if load_weights:
model.load_weights(weights_file)
@tf.numpy_function(Tout=[tf.float32, tf.float32, tf.int32])
def step(action: np.ndarray):
state, reward, done, _ = env.step(action)
return (state.astype(np.float32),np.array(reward, np.float32),np.array(done, np.int32))
def normalize_state(state: tf.Tensor):
tensor = tf.convert_to_tensor(state, dtype=tf.float32)
return tf.expand_dims(tensor / 255, 0)
@tf.numpy_function(Tout=[tf.int64])
def choose_action(probs: np.ndarray):
action = np.random.choice(num_actions, p=np.squeeze(probs))
return tf.cast(action, tf.int64)
@tf.function
def train(initial_observation: tf.Tensor):
initial_shape = initial_observation.shape
with tf.GradientTape() as tape:
prob, value = model(initial_observation)
action = tf.squeeze(choose_action(prob))
log_prob = tf.math.log(prob[0, action])
entropy = -tf.reduce_sum(prob * tf.math.log(prob + 1e-9), axis=1)
observation, reward, done = step(action)
if tf.cast(done, tf.bool):
reward = done_reward
observation = normalize_state(observation)
observation.set_shape(initial_shape)
reward = tf.convert_to_tensor([reward], dtype=tf.float32)
next_prob, next_value = model(observation)
next_prob = tf.stop_gradient(next_prob)
next_value = tf.stop_gradient(next_value)
q_value = value[0]
q_value.set_shape([1, ])
q_next = reward + gamma * next_value[0]
q_next.set_shape([1, ])
advantage = tf.stop_gradient(q_next[0] - q_value[0])
action_loss = -1 * (log_prob * advantage + entropy_weight * entropy)
critic_loss = huber_loss(q_value, q_next)
agent_loss = action_loss + critic_loss
grads = tape.gradient(agent_loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
return reward, observation, tf.cast(done, tf.bool)
graph_interval = 100
score_logger = collections.deque(maxlen=graph_interval+10)
score_logger_mean = []
score_logger_std = []
total_timestep = 0
t = tqdm()
for episode in range(max_episodes):
state = env.reset()
state = normalize_state(state)
rewards = []
done = False
for timestep in range(1_000_000):
reward, state, done = train(state)
rewards.append(reward)
t.update(1)
if done:
break
total_timestep += timestep
episode_reward = float(tf.reduce_sum(rewards))
score_logger.append(episode_reward)
running_reward = np.mean(score_logger)
t.set_postfix(episode_reward=episode_reward, episode=episode, running=running_reward)
if len(score_logger) > graph_interval:
score_logger_mean.append(running_reward)
score_logger_std.append(np.std(score_logger))
if episode % graph_interval == 0 and episode > 0:
print(f"\nEpisode: {episode} Mean: {running_reward} | {suffix}")
model.save_weights(weights_file)
plt.clf()
frame = round(total_timestep / 1e6, 2)
plt.title(f"lr {lr} clip {clip} | start {start_level} | num {num_level} | entropy {entropy_weight} | f {frame}M")
x = np.arange(len(score_logger_mean))
mean_low = np.array(score_logger_mean) - np.array(score_logger_std)
mean_high = np.array(score_logger_mean) + np.array(score_logger_std)
plt.plot(x, score_logger_mean, color='blue')
plt.fill_between(x, mean_low, mean_high, color='cyan', alpha=0.5)
plt.plot([x[0], x[-1]], [score_logger_mean[0], score_logger_mean[-1]], color='red', linestyle='-', linewidth=1)
plt.savefig(plt_file)
# show distribution of probs
prob, value = model(state)
print(value[0, 0].numpy(), np.squeeze(prob))
print('entropy', -tf.reduce_sum(prob * tf.math.log(prob + 1e-9), axis=1).numpy())