-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
227 lines (201 loc) · 9.55 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from baseline.transportnet import Transportnet
from learning.vol_match_transport import VolMatchTransport
from learning.vol_match_rotate import VolMatchRotate
import hydra
from omegaconf import DictConfig
from learning.dataset import SceneDatasetShapeCompletion, SceneDatasetShapeCompletionSnap, TNDataset, VolMatchDataset, SceneDatasetMaskRCNN
import torch
from torch.utils.data import DataLoader
from torch.optim import Adam
from torch.nn import MSELoss
from learning.shape_comp_model import ShapeCompModel
from learning.shape_comp_model_new import ShapeCompModelNew
from tqdm import tqdm
from pathlib import Path
import numpy as np
from utils import get_device, init_logs_dir, next_loop_iter, seed_all_int, calcMIoU
from learning.seg import get_instance_segmentation_model, get_transform
from vision_utils import utils
from vision_utils.engine import train_one_epoch, evaluate
def train_shape_completion(cfg: DictConfig):
# Load dataset
scene_type = cfg.train.scene_type
dataset = SceneDatasetShapeCompletion(Path(cfg.train.dataset_path) / scene_type / "train_sc", scene_type)
dataloader = DataLoader(dataset, batch_size=cfg.train.batch_size, shuffle=True, num_workers=cfg.ray.num_cpus)
valset = SceneDatasetShapeCompletionSnap(Path('dataset/vol_match_abc/val'), scene_type)
val_dataloader = DataLoader(valset, batch_size=cfg.train.batch_size, num_workers=cfg.evaluate.num_workers, shuffle=False)
device = get_device()
vol_shape = cfg.env.obj_vol_shape if scene_type=='object' else cfg.env.kit_vol_shape
sc_model = ShapeCompModelNew(vol_shape).to(device)
optim = Adam(sc_model.parameters())
criterion = MSELoss()
logs_dir = Path(cfg.train.log_path)
logs_dir.mkdir(parents=True, exist_ok=True)
pbar = tqdm(range(cfg.train.epochs), desc="Training SC", dynamic_ncols=True)
def train_sc_epoch(dl: DataLoader, train:bool=True):
total_IoU, cnt = 0, 0
for inps, targets in dl:
inps, targets = inps.to(device, dtype=torch.float), targets.to(device, dtype=torch.float)
sc_model.train(train)
if train:
preds = sc_model(inps)
else:
with torch.no_grad():
preds = sc_model(inps)
cnt += inps.shape[0]
total_IoU += inps.shape[0] * calcMIoU(preds, targets)
if train:
loss = criterion(preds, targets)
optim.zero_grad()
loss.backward()
optim.step()
mIoU = total_IoU/cnt
return mIoU
for epoch in pbar:
mIoU = train_sc_epoch(dataloader)
if (epoch + 1) % cfg.train.save_model_every == 0 or (epoch + 1) == cfg.train.epochs:
model_path = logs_dir / f"sc_{epoch+1}.pth"
torch.save(sc_model, model_path)
mIoU_val = train_sc_epoch(val_dataloader, train=False)
print(f"Model saved: {model_path}; train mIoU: {mIoU:.2f}; val mIoU: {mIoU_val:.2f}")
pbar.set_postfix(mean_mIoU = f"{mIoU:.2f}")
pbar.close()
def train_seg(cfg: DictConfig):
device = get_device()
logs_dir = init_logs_dir(cfg, f'seg')
print(f"Saving logs in {logs_dir}")
dataset_root = Path(cfg.train.dataset_path)
use_depth = cfg.train.use_depth
normalize_depth = cfg.train.normalize_depth
train_transforms = get_transform(True, use_depth, normalize_depth)
train_dataset = SceneDatasetMaskRCNN(
dataset_root=dataset_root / "train", use_depth=use_depth, transforms=train_transforms)
train_dataset.print_statistics("Train|")
data_loader = DataLoader(
train_dataset, batch_size=cfg.train.batch_size, shuffle=True,
num_workers = cfg.train.num_cpus,
collate_fn=utils.collate_fn)
val_transforms = get_transform(False, use_depth, normalize_depth)
val_dataset = SceneDatasetMaskRCNN(
dataset_root=dataset_root / "val", use_depth=use_depth, transforms=val_transforms)
val_dataset.print_statistics("Val|")
data_loader_val = DataLoader(
val_dataset, batch_size=cfg.train.batch_size, shuffle=False,
num_workers = cfg.train.num_cpus,
collate_fn=utils.collate_fn)
num_classes = 3
# get the model using our helper function
model = get_instance_segmentation_model(num_classes)
# move model to the right device
model.to(device)
# construct an optimizer
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.005, momentum=0.9, weight_decay=0.0005)
# and a learning rate scheduler which decreases the learning rate by
# 10x every 3 epochs
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1)
# let's train it for 10 epochs
num_epochs = cfg.train.epochs
for epoch in range(num_epochs):
print(f"Epoch: {epoch + 1} / {num_epochs}")
# train for one epoch, printing every 10 iterations
train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq=10)
# update the learning rate
lr_scheduler.step()
# evaluate on the test dataset
evaluate(model, data_loader_val, device=device)
if (epoch + 1) % 5 == 0 or (epoch + 1) == num_epochs:
torch.save(model, f"{logs_dir}/{epoch}.pth")
def train_tn(cfg: DictConfig):
dataset = TNDataset.from_cfg(cfg.train, 'train')
dataloader = DataLoader(dataset, batch_size=1, shuffle=True, num_workers=1)
dataloader_iter = iter(dataloader)
model = Transportnet.from_cfg(cfg.train)
valset = TNDataset.from_cfg(cfg.train, 'val')
valset_iter = iter(valset)
train_steps = cfg.train.train_steps
save_interval = cfg.train.save_interval
num_samples = 20
pbar = tqdm(range(train_steps), desc=f"Training tn", dynamic_ncols=True)
for epoch in pbar:
dataloader_iter, next_batch = next_loop_iter(dataloader_iter, dataloader)
sample = (item[0].numpy() for item in next_batch)
model.run(sample, training=True)
if (epoch+1) % save_interval == 0:
total_diff_ori, total_diff_pos = 0, 0
for _ in range(num_samples):
valset_iter, sample = next_loop_iter(valset_iter, valset)
with torch.no_grad():
losses, preds, (pos_diff, ori_diff) = model.run(sample, training=False)
total_diff_pos += pos_diff
total_diff_ori += ori_diff
pbar.set_postfix(pos_diff=f'{total_diff_pos/num_samples:.2f}',
ori_diff=f'{total_diff_ori/num_samples:.2f}')
model.save()
def train_vol_match(cfg: DictConfig):
name = cfg.train.name
vm_cfg = cfg.vol_match_6DoF
no_user_input = vm_cfg.no_user_input
if name == "vol_match_transport":
vol_matcher = VolMatchTransport.from_cfg(vm_cfg, cfg.env.voxel_size, vm_cfg.load_model)
train_steps = 20000
save_interval = 200
batch_size = 1 if no_user_input else 4
num_samples = 10
elif name == "vol_match_rotate":
vol_matcher = VolMatchRotate.from_cfg(vm_cfg, vm_cfg.load_model)
train_steps = 150000
save_interval = 500
batch_size = 1
num_samples = 100
dataset = VolMatchDataset.from_cfg(cfg, Path(vm_cfg.dataset_path) / 'train', vol_type=None)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=1)
dataloader_iter = iter(dataloader)
valset = VolMatchDataset.from_cfg(cfg, Path(vm_cfg.dataset_path) / 'val', vol_type=None)
valset_loader = DataLoader(valset, batch_size=batch_size, shuffle=False, num_workers=1)
valset_loader_iter = iter(valset_loader)
if no_user_input:
num_samples = len(valset)
pbar = tqdm(range(train_steps), desc=f"Training {name}", dynamic_ncols=True)
losses, diffs, best_val_diff = [], [], np.Inf
for epoch in pbar:
dataloader_iter, next_batch = next_loop_iter(dataloader_iter, dataloader)
loss, _, _, diff = vol_matcher.run(next_batch, training=True, log=True, calc_loss=True)
if loss is not None:
losses.append(loss)
diffs.append(diff)
if (epoch+1) % save_interval == 0:
vol_matcher.save()
val_diffs = []
for _ in range(num_samples):
valset_loader_iter, next_batch = next_loop_iter(valset_loader_iter, valset_loader)
with torch.no_grad():
_, _, pred, diff = vol_matcher.run(next_batch, training=False, log=False, calc_loss=True)
if diff is not None:
val_diffs.append(diff)
val_med = np.median(np.array(val_diffs))
if val_med < best_val_diff:
print(f'New SoTA: {val_med} at {epoch+1}.')
best_val_diff = val_med
pbar.set_postfix(mean_loss = f"{np.mean(np.array(losses)):.2f}",
med_diff = f"{np.median(np.array(diffs)):.2f}",
val_diff = f"{val_med:.2f}",
best_diff = f"{best_val_diff:.2f}")
losses, diffs = [], []
@hydra.main(config_path="conf", config_name="config")
def main(cfg: DictConfig):
# Add save directory in hydra config
seed_all_int(cfg.seeds.train)
# init_logs_dir(cfg, cfg.train.name)
if cfg.train.name == "shape_completion":
train_shape_completion(cfg)
elif cfg.train.name == "seg":
train_seg(cfg)
elif cfg.train.name == "tn":
train_tn(cfg)
elif cfg.train.name in ["vol_match_transport", "vol_match_rotate", "pointnet_regressor"]:
train_vol_match(cfg)
else:
raise NotImplementedError
if __name__ == "__main__":
main()