-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
209 lines (175 loc) · 8.99 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
"""Train the model"""
import sys
import json
import argparse
import logging
import os
import numpy as np
import torch
from torch import nn, optim
from torch.nn.utils import clip_grad_norm_
from tqdm import tqdm
from models.losses import focal_loss, smooth_l1_loss
from models.fpn import retinanet
from dataGen.data_loader import fetch_trn_loader, fetch_val_loader
import utils
with open('config.json', 'r') as f:
config = json.load(f)
# torch.device object used throughout this script
device = torch.device("cuda" if config['use_cuda'] else "cpu")
def parse_args(args=None):
parser = argparse.ArgumentParser()
parser.add_argument('--fold', required=True, choices=[1, 2, 3, 4, 5], type=int, help="Directory containing the dataset")
parser.add_argument('--learning_rate', default=1e-5, type=float, help="learning rate of optimizer")
parser.add_argument('--num_epochs', default=30, type=int, help="total epochs to train")
parser.add_argument('--frozen_epochs', default=20, type=int, help="the first epoches to fix parameter of backbone")
parser.add_argument('--save_dir', default='checkpoints', type=str, help="Directory containing params.json")
parser.add_argument('--checkpoint2load', default=None, type=str, help="checkpoint to load") # 'best' or 'train'
parser.add_argument('--optim_restore', default=True, type=bool, help="whether to restore optimizer parameter")
return parser.parse_args(args)
def train(model, optimizer, loss_fn, dataloader, params, epoch):
"""Train the model on `num_steps` batches
Args:
model: (torch.nn.Module) the neural network
optimizer: (torch.optim) optimizer for parameters of model
loss_fn: a function that takes batch_output and batch_labels and computes the loss for the batch
dataloader: (DataLoader) a torch.utils.data.DataLoader object that fetches training data
metrics: (dict) a dictionary of functions that compute a metric using the output and labels of each batch
params: (Params) hyperparameters
num_steps: (int) number of batches to train on, each of size params.batch_size
"""
loss_TOTAL = utils.RunningAverage()
loss_FL = utils.RunningAverage()
loss_L1 = utils.RunningAverage()
model.train()
if epoch < params.frozen_epochs:
model.train_extractor(False)
else:
model.train_extractor(True)
with tqdm(total=len(dataloader)) as t:
for i, (img_batch, labels_batch, regression_batch) in enumerate(dataloader):
img_batch, labels_batch, regression_batch = img_batch.to(device), labels_batch.to(device), regression_batch.to(device)
classification_pred, regression_pred, _ = model(img_batch)
loss_cls = loss_fn['focal'](labels_batch, classification_pred) * config['loss_ratio_FL2L1']
loss_reg = loss_fn['smooth_l1'](regression_batch, regression_pred)
loss_all = loss_cls + loss_reg
loss_cls_detach = loss_cls.detach().item()
loss_reg_detach = loss_reg.detach().item()
loss_all_detach = loss_all.detach().item()
# clear previous gradients, compute gradients of all variables wrt loss
optimizer.zero_grad()
loss_all.backward()
# The norm is computed over all gradients together
clip_grad_norm_(model.parameters(), 0.5)
# performs updates using calculated gradients
optimizer.step()
# update the average loss
loss_TOTAL.update(loss_all_detach)
loss_FL.update(loss_cls_detach)
loss_L1.update(loss_reg_detach)
del img_batch, labels_batch, regression_batch
t.set_postfix(total_loss='{:05.3f}'.format(loss_all_detach), FL_loss='{:05.3f}'.format(
loss_cls_detach), L1_loss='{:05.3f}'.format(loss_reg_detach))
t.update()
logging.info("total_loss:{:05.3f} FL_loss:{:05.3f} L1_loss:{:05.3f}".format(loss_TOTAL(), loss_FL(), loss_L1()))
del loss_TOTAL, loss_FL, loss_L1
def evaluate(model, loss_fn, val_dataloader, params, epoch):
# set model to evaluation mode
model.eval()
loss_TOTAL = utils.RunningAverage()
loss_FL = utils.RunningAverage()
loss_L1 = utils.RunningAverage()
with torch.no_grad():
for i, (img_batch, labels_batch, regression_batch) in enumerate(val_dataloader):
img_batch, labels_batch, regression_batch = img_batch.to(device), labels_batch.to(device), regression_batch.to(device)
classification_pred, regression_pred, _ = model(img_batch)
loss_cls = loss_fn['focal'](labels_batch, classification_pred) * config['loss_ratio_FL2L1']
loss_reg = loss_fn['smooth_l1'](regression_batch, regression_pred)
loss_all = loss_cls + loss_reg
loss_cls_detach = loss_cls.detach().item()
loss_reg_detach = loss_reg.detach().item()
loss_all_detach = loss_all.detach().item()
# update the average loss
loss_TOTAL.update(loss_all_detach)
loss_FL.update(loss_cls_detach)
loss_L1.update(loss_reg_detach)
del img_batch, labels_batch, regression_batch
logging.info("total_loss:{:05.3f} FL_loss:{:05.3f} L1_loss:{:05.3f}".format(loss_TOTAL(), loss_FL(), loss_L1()))
res = loss_TOTAL()
del loss_TOTAL, loss_FL, loss_L1
return res
def train_and_evaluate(model, train_dataloader, val_dataloader, optimizer, loss_fn, params,
scheduler=None):
"""Train the model and evaluate every epoch.
Args:
model: (torch.nn.Module) the neural network
train_dataloader: (DataLoader) a torch.utils.data.DataLoader object that fetches training data
val_dataloader: (DataLoader) a torch.utils.data.DataLoader object that fetches validation data
optimizer: (torch.optim) optimizer for parameters of model
loss_fn: a function that takes batch_output and batch_labels and computes the loss for the batch
metrics: (dict) a dictionary of functions that compute a metric using the output and labels of each batch
params: (Params) hyperparameters
"""
init_epoch = 0
best_val_loss = float('inf')
# reload weights from restore_file if specified
if params.checkpoint2load is not None:
checkpoint = utils.load_checkpoint(params.checkpoint2load, model, optimizer if params.optim_restore else None)
if 'epoch' in checkpoint:
init_epoch = checkpoint['epoch']
if 'best_val_loss' in checkpoint:
best_val_loss = checkpoint['best_val_loss']
for epoch in range(init_epoch, params.num_epochs):
# Run one epoch
logging.info("Epoch {}/{}".format(epoch + 1, params.num_epochs))
if scheduler is not None:
scheduler.step()
# compute number of batches in one epoch (one full pass over the training set)
train(model, optimizer, loss_fn, train_dataloader, params, epoch)
logging.info("validating ... ")
# Evaluate for one epoch on validation set
val_loss = evaluate(model, loss_fn, val_dataloader, params, epoch)
is_best = val_loss <= best_val_loss
if is_best:
best_val_loss = val_loss
# Save weights
utils.save_checkpoint({'epoch': epoch + 1,
'state_dict': model.state_dict(),
'optim_dict': optimizer.state_dict(),
'best_val_loss': best_val_loss},
is_best=is_best,
checkpoint=params.save_dir)
if __name__ == '__main__':
# Load the parameters from json file
args = parse_args()
# Set the random seed for reproducible experiments
torch.manual_seed(42)
if config['use_cuda']:
torch.cuda.manual_seed(42)
args.save_dir = os.path.join(args.save_dir, config['backbone'], f'fold_{args.fold}')
# Set the logger
if not os.path.isdir(args.save_dir):
os.makedirs(args.save_dir)
# save config in file
with open(os.path.join(args.save_dir, 'config.json'), 'w') as f:
config.update(vars(args))
json.dump(config, f, indent=4)
utils.set_logger(os.path.join(args.save_dir, 'train.log'))
logging.info(' '.join(sys.argv[:]))
logging.info(args.save_dir)
# Create the input data pipeline
logging.info("Loading the datasets...")
# fetch dataloaders
train_dl = fetch_trn_loader(args.fold)
val_dl = fetch_val_loader(args.fold)
# Define the model and optimizer
Net = retinanet(config['backbone'])
model = Net.to(device)
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
# scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.1)
# fetch loss function and metrics
loss_fn = {'focal': focal_loss(alpha=config['focal_alpha']), 'smooth_l1': smooth_l1_loss(sigma=config['l1_sigma'])}
# Train the model
logging.info("Starting training for {} epoch(s)".format(args.num_epochs))
train_and_evaluate(model, train_dl, val_dl, optimizer, loss_fn, args, scheduler=None)
logging.info('Done')