-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmain.py
545 lines (454 loc) · 24.6 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
from copy import deepcopy
import os
import sys
import json
import warnings
warnings.filterwarnings("ignore")
import math
import time
import random
import pickle
import argparse
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
from torchvision import transforms
from util.icbhi_dataset import ICBHIDataset
from util.icbhi_util import get_score
from util.augmentation import SpecAugment
from util.misc import adjust_learning_rate, warmup_learning_rate, set_optimizer, update_moving_average
from util.misc import AverageMeter, accuracy, save_model, update_json
from models import get_backbone_class, Projector
from method import PatchMixLoss, PatchMixConLoss
def parse_args():
parser = argparse.ArgumentParser('argument for supervised training')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--print_freq', type=int, default=10)
parser.add_argument('--save_freq', type=int, default=100)
parser.add_argument('--save_dir', type=str, default='./save')
parser.add_argument('--tag', type=str, default='',
help='tag for experiment name')
parser.add_argument('--resume', type=str, default=None,
help='path of model checkpoint to resume')
parser.add_argument('--eval', action='store_true',
help='only evaluation with pretrained encoder and classifier')
parser.add_argument('--two_cls_eval', action='store_true',
help='evaluate with two classes')
# optimization
parser.add_argument('--optimizer', type=str, default='adam')
parser.add_argument('--epochs', type=int, default=400)
parser.add_argument('--learning_rate', type=float, default=1e-3)
parser.add_argument('--lr_decay_epochs', type=str, default='120,160')
parser.add_argument('--lr_decay_rate', type=float, default=0.1)
parser.add_argument('--weight_decay', type=float, default=1e-4)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--cosine', action='store_true',
help='using cosine annealing')
parser.add_argument('--warm', action='store_true',
help='warm-up for large batch training')
parser.add_argument('--warm_epochs', type=int, default=0,
help='warmup epochs')
parser.add_argument('--weighted_loss', action='store_true',
help='weighted cross entropy loss (higher weights on abnormal class)')
parser.add_argument('--mix_beta', default=1.0, type=float,
help='patch-mix interpolation coefficient')
parser.add_argument('--time_domain', action='store_true',
help='patchmix for the specific time domain')
# dataset
parser.add_argument('--dataset', type=str, default='icbhi')
parser.add_argument('--data_folder', type=str, default='./data/')
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--num_workers', type=int, default=8)
# icbhi dataset
parser.add_argument('--class_split', type=str, default='lungsound',
help='lungsound: (normal, crackles, wheezes, both), diagnosis: (healthy, chronic diseases, non-chronic diseases)')
parser.add_argument('--n_cls', type=int, default=4,
help='set k-way classification problem')
parser.add_argument('--test_fold', type=str, default='official', choices=['official', '0', '1', '2', '3', '4'],
help='test fold to use official 60-40 split or 80-20 split from RespireNet')
parser.add_argument('--weighted_sampler', action='store_true',
help='weighted sampler inversly proportional to class ratio')
parser.add_argument('--stetho_id', type=int, default=-1,
help='stethoscope device id, use only when finetuning on each stethoscope data')
parser.add_argument('--sample_rate', type=int, default=16000,
help='sampling rate when load audio data, and it denotes the number of samples per one second')
parser.add_argument('--butterworth_filter', type=int, default=None,
help='apply specific order butterworth band-pass filter')
parser.add_argument('--desired_length', type=int, default=8,
help='fixed length size of individual cycle')
parser.add_argument('--nfft', type=int, default=1024,
help='the frequency size of fast fourier transform')
parser.add_argument('--n_mels', type=int, default=128,
help='the number of mel filter banks')
parser.add_argument('--concat_aug_scale', type=float, default=0,
help='to control the number (scale) of concatenation-based augmented samples')
parser.add_argument('--pad_types', type=str, default='repeat',
help='zero: zero-padding, repeat: padding with duplicated samples, aug: padding with augmented samples')
parser.add_argument('--resz', type=float, default=1,
help='resize the scale of mel-spectrogram')
parser.add_argument('--raw_augment', type=int, default=0,
help='control how many number of augmented raw audio samples')
parser.add_argument('--blank_region_clip', action='store_true',
help='remove the blank region, high frequency region')
parser.add_argument('--specaug_policy', type=str, default='icbhi_ast_sup',
help='policy (argument values) for SpecAugment')
parser.add_argument('--specaug_mask', type=str, default='mean',
help='specaug mask value', choices=['mean', 'zero'])
# model
parser.add_argument('--model', type=str, default='ast')
parser.add_argument('--pretrained', action='store_true')
parser.add_argument('--pretrained_ckpt', type=str, default=None,
help='path to pre-trained encoder model')
parser.add_argument('--from_sl_official', action='store_true',
help='load from supervised imagenet-pretrained model (official PyTorch)')
parser.add_argument('--ma_update', action='store_true',
help='whether to use moving average update for model')
parser.add_argument('--ma_beta', type=float, default=0,
help='moving average value')
# for AST
parser.add_argument('--audioset_pretrained', action='store_true',
help='load from imagenet- and audioset-pretrained model')
# for SSAST
parser.add_argument('--ssast_task', type=str, default='ft_avgtok',
help='pretraining or fine-tuning task', choices=['ft_avgtok', 'ft_cls'])
parser.add_argument('--fshape', type=int, default=16,
help='fshape of SSAST')
parser.add_argument('--tshape', type=int, default=16,
help='tshape of SSAST')
parser.add_argument('--ssast_pretrained_type', type=str, default='Patch',
help='pretrained ckpt version of SSAST model')
parser.add_argument('--method', type=str, default='ce')
# Patch-Mix CL loss
parser.add_argument('--proj_dim', type=int, default=768)
parser.add_argument('--temperature', type=float, default=0.06)
parser.add_argument('--alpha', type=float, default=1.0)
parser.add_argument('--negative_pair', type=str, default='all',
help='the method for selecting negative pair', choices=['all', 'diff_label'])
parser.add_argument('--target_type', type=str, default='grad_block',
help='how to make target representation', choices=['grad_block', 'grad_flow', 'project_block', 'project_flow'])
args = parser.parse_args()
iterations = args.lr_decay_epochs.split(',')
args.lr_decay_epochs = list([])
for it in iterations:
args.lr_decay_epochs.append(int(it))
args.model_name = '{}_{}_{}'.format(args.dataset, args.model, args.method)
if args.tag:
args.model_name += '_{}'.format(args.tag)
if args.method in ['patchmix', 'patchmix_cl']:
assert args.model in ['ast', 'ssast']
args.save_folder = os.path.join(args.save_dir, args.model_name)
if not os.path.isdir(args.save_folder):
os.makedirs(args.save_folder)
if args.warm:
args.warmup_from = args.learning_rate * 0.1
args.warm_epochs = 10
if args.cosine:
eta_min = args.learning_rate * (args.lr_decay_rate ** 3)
args.warmup_to = eta_min + (args.learning_rate - eta_min) * (
1 + math.cos(math.pi * args.warm_epochs / args.epochs)) / 2
else:
args.warmup_to = args.learning_rate
if args.dataset == 'icbhi':
if args.class_split == 'lungsound':
if args.n_cls == 4:
args.cls_list = ['normal', 'crackle', 'wheeze', 'both']
elif args.n_cls == 2:
args.cls_list = ['normal', 'abnormal']
elif args.class_split == 'diagnosis':
if args.n_cls == 3:
args.cls_list = ['healthy', 'chronic_diseases', 'non-chronic_diseases']
elif args.n_cls == 2:
args.cls_list = ['healthy', 'unhealthy']
else:
raise NotImplementedError
return args
def set_loader(args):
if args.dataset == 'icbhi':
# get rawo information and calculate mean and std for normalization
# dataset = ICBHIDataset(train_flag=True, transform=transforms.Compose([transforms.ToTensor()]), args=args, print_flag=False, mean_std=True)
# mean, std = get_mean_and_std(dataset)
# args.h, args.w = dataset.h, dataset.w
# print('*' * 20)
# print('[Raw dataset information]')
# print('Stethoscope device number: {}, and patience number without overlap: {}'.format(len(dataset.device_to_id), len(set(sum(dataset.device_id_to_patient.values(), []))) ))
# for device, id in dataset.device_to_id.items():
# print('Device {} ({}): {} number of patience'.format(id, device, len(dataset.device_id_to_patient[id])))
# print('Spectrogram shpae on ICBHI dataset: {} (height) and {} (width)'.format(args.h, args.w))
# print('Mean and std of ICBHI dataset: {} (mean) and {} (std)'.format(round(mean.item(), 2), round(std.item(), 2)))
args.h, args.w = 798, 128
train_transform = [transforms.ToTensor(),
SpecAugment(args),
transforms.Resize(size=(int(args.h * args.resz), int(args.w * args.resz)))]
val_transform = [transforms.ToTensor(),
transforms.Resize(size=(int(args.h * args.resz), int(args.w * args.resz)))]
# train_transform.append(transforms.Normalize(mean=mean, std=std))
# val_transform.append(transforms.Normalize(mean=mean, std=std))
train_transform = transforms.Compose(train_transform)
val_transform = transforms.Compose(val_transform)
train_dataset = ICBHIDataset(train_flag=True, transform=train_transform, args=args, print_flag=True)
val_dataset = ICBHIDataset(train_flag=False, transform=val_transform, args=args, print_flag=True)
# for weighted_loss
args.class_nums = train_dataset.class_nums
else:
raise NotImplemented
if args.weighted_sampler:
reciprocal_weights = []
for idx in range(len(train_dataset)):
reciprocal_weights.append(train_dataset.class_ratio[train_dataset.labels[idx]])
weights = (1 / torch.Tensor(reciprocal_weights))
sampler = torch.utils.data.sampler.WeightedRandomSampler(weights, len(train_dataset))
else:
sampler = None
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=sampler is None,
num_workers=args.num_workers, pin_memory=True, sampler=sampler, drop_last=True)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False,
num_workers=args.num_workers, pin_memory=True, sampler=None)
return train_loader, val_loader, args
def set_model(args):
kwargs = {}
if args.model == 'ast':
kwargs['input_fdim'] = int(args.h * args.resz)
kwargs['input_tdim'] = int(args.w * args.resz)
kwargs['label_dim'] = args.n_cls
kwargs['imagenet_pretrain'] = args.from_sl_official
kwargs['audioset_pretrain'] = args.audioset_pretrained
kwargs['mix_beta'] = args.mix_beta # for Patch-MixCL
elif args.model == 'ssast':
kwargs['label_dim'] = args.n_cls
kwargs['fshape'], kwargs['tshape'] = args.fshape, args.tshape
kwargs['fstride'], kwargs['tstride'] = 10, 10
kwargs['input_tdim'] = 798
kwargs['task'] = args.ssast_task
kwargs['pretrain_stage'] = not args.audioset_pretrained
kwargs['load_pretrained_mdl_path'] = args.ssast_pretrained_type
kwargs['mix_beta'] = args.mix_beta # for Patch-MixCL
model = get_backbone_class(args.model)(**kwargs)
classifier = nn.Linear(model.final_feat_dim, args.n_cls) if args.model not in ['ast', 'ssast'] else deepcopy(model.mlp_head)
if not args.weighted_loss:
weights = None
criterion = nn.CrossEntropyLoss()
else:
weights = torch.tensor(args.class_nums, dtype=torch.float32)
weights = 1.0 / (weights / weights.sum())
weights /= weights.sum()
criterion = nn.CrossEntropyLoss(weight=weights)
if args.model not in ['ast', 'ssast'] and args.from_sl_official:
model.load_sl_official_weights()
print('pretrained model loaded from PyTorch ImageNet-pretrained')
# load SSL pretrained checkpoint for linear evaluation
if args.pretrained and args.pretrained_ckpt is not None:
ckpt = torch.load(args.pretrained_ckpt, map_location='cpu')
state_dict = ckpt['model']
# HOTFIX: always use dataparallel during SSL pretraining
new_state_dict = {}
for k, v in state_dict.items():
if "module." in k:
k = k.replace("module.", "")
if "backbone." in k:
k = k.replace("backbone.", "")
new_state_dict[k] = v
state_dict = new_state_dict
model.load_state_dict(state_dict, strict=False)
if ckpt.get('classifier', None) is not None:
classifier.load_state_dict(ckpt['classifier'], strict=True)
print('pretrained model loaded from: {}'.format(args.pretrained_ckpt))
projector = Projector(model.final_feat_dim, args.proj_dim) if args.method == 'patchmix_cl' else nn.Identity()
if args.method == 'ce':
criterion = [criterion.cuda()]
elif args.method == 'patchmix':
criterion = [criterion.cuda(), PatchMixLoss(criterion=criterion).cuda()]
elif args.method == 'patchmix_cl':
criterion = [criterion.cuda(), PatchMixConLoss(temperature=args.temperature).cuda()]
if torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model)
model.cuda()
classifier.cuda()
projector.cuda()
optim_params = list(model.parameters()) + list(classifier.parameters()) + list(projector.parameters())
optimizer = set_optimizer(args, optim_params)
return model, classifier, projector, criterion, optimizer
def train(train_loader, model, classifier, projector, criterion, optimizer, epoch, args, scaler=None):
model.train()
classifier.train()
projector.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
end = time.time()
for idx, (images, labels, metadata) in enumerate(train_loader):
if args.ma_update:
# store the previous iter checkpoint
with torch.no_grad():
ma_ckpt = [deepcopy(model.state_dict()), deepcopy(classifier.state_dict()), deepcopy(projector.state_dict())]
data_time.update(time.time() - end)
images = images.cuda(non_blocking=True)
labels = labels.cuda(non_blocking=True)
bsz = labels.shape[0]
warmup_learning_rate(args, epoch, idx, len(train_loader), optimizer)
with torch.cuda.amp.autocast():
if args.method == 'ce':
features = model(images)
output = classifier(features)
loss = criterion[0](output, labels)
elif args.method == 'patchmix':
mix_images, labels_a, labels_b, lam, index = model(images, y=labels, patch_mix=True, time_domain=args.time_domain)
output = classifier(mix_images)
loss = criterion[1](output, labels_a, labels_b, lam)
elif args.method == 'patchmix_cl':
features = model(images)
output = classifier(features)
loss = criterion[0](output, labels)
if args.target_type == 'grad_block':
proj1 = deepcopy(features.detach())
elif args.target_type == 'grad_flow':
proj1 = features
elif args.target_type == 'project_block':
proj1 = deepcopy(projector(features).detach())
elif args.target_type == 'project_flow':
proj1 = projector(features)
# use 'patchmix_cl' for augmentation
mix_images, labels_a, labels_b, lam, index = model(images, y=labels, patch_mix=True, time_domain=args.time_domain)
proj2 = projector(mix_images)
loss += args.alpha * criterion[1](proj1, proj2, labels, labels_b, lam, index, args)
losses.update(loss.item(), bsz)
[acc1], _ = accuracy(output[:bsz], labels, topk=(1,))
top1.update(acc1[0], bsz)
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if args.ma_update:
with torch.no_grad():
# exponential moving average update
model = update_moving_average(args.ma_beta, model, ma_ckpt[0])
classifier = update_moving_average(args.ma_beta, classifier, ma_ckpt[1])
projector = update_moving_average(args.ma_beta, projector, ma_ckpt[2])
# print info
if (idx + 1) % args.print_freq == 0:
print('Train: [{0}][{1}/{2}]\t'
'BT {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'DT {data_time.val:.3f} ({data_time.avg:.3f})\t'
'loss {loss.val:.3f} ({loss.avg:.3f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch, idx + 1, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1))
sys.stdout.flush()
return losses.avg, top1.avg
def validate(val_loader, model, classifier, criterion, args, best_acc, best_model=None):
save_bool = False
model.eval()
classifier.eval()
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
hits, counts = [0.0] * args.n_cls, [0.0] * args.n_cls
with torch.no_grad():
end = time.time()
for idx, (images, labels, metadata) in enumerate(val_loader):
images = images.cuda(non_blocking=True)
labels = labels.cuda(non_blocking=True)
bsz = labels.shape[0]
with torch.cuda.amp.autocast():
features = model(images)
output = classifier(features)
loss = criterion[0](output, labels)
losses.update(loss.item(), bsz)
[acc1], _ = accuracy(output, labels, topk=(1,))
top1.update(acc1[0], bsz)
_, preds = torch.max(output, 1)
for idx in range(preds.shape[0]):
counts[labels[idx].item()] += 1.0
if not args.two_cls_eval:
if preds[idx].item() == labels[idx].item():
hits[labels[idx].item()] += 1.0
else: # only when args.n_cls == 4
if labels[idx].item() == 0 and preds[idx].item() == labels[idx].item():
hits[labels[idx].item()] += 1.0
elif labels[idx].item() != 0 and preds[idx].item() > 0: # abnormal
hits[labels[idx].item()] += 1.0
sp, se, sc = get_score(hits, counts)
batch_time.update(time.time() - end)
end = time.time()
if (idx + 1) % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Acc@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
idx + 1, len(val_loader), batch_time=batch_time,
loss=losses, top1=top1))
if sc > best_acc[-1] and se > 5:
save_bool = True
best_acc = [sp, se, sc]
best_model = [deepcopy(model.state_dict()), deepcopy(classifier.state_dict())]
print(' * S_p: {:.2f}, S_e: {:.2f}, Score: {:.2f} (Best S_p: {:.2f}, S_e: {:.2f}, Score: {:.2f})'.format(sp, se, sc, best_acc[0], best_acc[1], best_acc[-1]))
print(' * Acc@1 {top1.avg:.2f}'.format(top1=top1))
return best_acc, best_model, save_bool
def main():
args = parse_args()
with open(os.path.join(args.save_folder, 'train_args.json'), 'w') as f:
json.dump(vars(args), f, indent=4)
# fix seed
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
cudnn.deterministic = True
cudnn.benchmark = True
best_model = None
if args.dataset == 'icbhi':
best_acc = [0, 0, 0] # Specificity, Sensitivity, Score
train_loader, val_loader, args = set_loader(args)
model, classifier, projector, criterion, optimizer = set_model(args)
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
args.start_epoch += 1
print("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
else:
args.start_epoch = 1
# use mix_precision:
scaler = torch.cuda.amp.GradScaler()
print('*' * 20)
if not args.eval:
print('Training for {} epochs on {} dataset'.format(args.epochs, args.dataset))
for epoch in range(args.start_epoch, args.epochs+1):
adjust_learning_rate(args, optimizer, epoch)
# train for one epoch
time1 = time.time()
loss, acc = train(train_loader, model, classifier, projector, criterion, optimizer, epoch, args, scaler)
time2 = time.time()
print('Train epoch {}, total time {:.2f}, accuracy:{:.2f}'.format(
epoch, time2-time1, acc))
# eval for one epoch
best_acc, best_model, save_bool = validate(val_loader, model, classifier, criterion, args, best_acc, best_model)
# save a checkpoint of model and classifier when the best score is updated
if save_bool:
save_file = os.path.join(args.save_folder, 'best_epoch_{}.pth'.format(epoch))
print('Best ckpt is modified with Score = {:.2f} when Epoch = {}'.format(best_acc[2], epoch))
save_model(model, optimizer, args, epoch, save_file, classifier)
if epoch % args.save_freq == 0:
save_file = os.path.join(args.save_folder, 'epoch_{}.pth'.format(epoch))
save_model(model, optimizer, args, epoch, save_file, classifier)
# save a checkpoint of classifier with the best accuracy or score
save_file = os.path.join(args.save_folder, 'best.pth')
model.load_state_dict(best_model[0])
classifier.load_state_dict(best_model[1])
save_model(model, optimizer, args, epoch, save_file, classifier)
else:
print('Testing the pretrained checkpoint on {} dataset'.format(args.dataset))
best_acc, _, _ = validate(val_loader, model, classifier, criterion, args, best_acc)
update_json('%s' % args.model_name, best_acc, path=os.path.join(args.save_dir, 'results.json'))
if __name__ == '__main__':
main()