diff --git a/python/cudf/cudf/core/df_protocol.py b/python/cudf/cudf/core/df_protocol.py index cc9f39d70ef..5f2dfe98a3e 100644 --- a/python/cudf/cudf/core/df_protocol.py +++ b/python/cudf/cudf/core/df_protocol.py @@ -105,7 +105,7 @@ def __dlpack__(self): # DLPack not implemented in NumPy yet, so leave it out here. try: cuda_array = as_cuda_array(self._buf).view(self._dtype) - return cp.asarray(cuda_array).toDlpack() + return cp.asarray(cuda_array).__dlpack__() except ValueError: raise TypeError(f"dtype {self._dtype} unsupported by `dlpack`") diff --git a/python/cudf/cudf/core/subword_tokenizer.py b/python/cudf/cudf/core/subword_tokenizer.py index 50d1a11c39b..24e6aa40de0 100644 --- a/python/cudf/cudf/core/subword_tokenizer.py +++ b/python/cudf/cudf/core/subword_tokenizer.py @@ -19,7 +19,7 @@ def _cast_to_appropriate_type(ar, cast_type): elif cast_type == "tf": from tensorflow.experimental.dlpack import from_dlpack - return from_dlpack(ar.astype("int32").toDlpack()) + return from_dlpack(ar.astype("int32").__dlpack__()) class SubwordTokenizer: diff --git a/python/cudf/cudf/tests/test_dlpack.py b/python/cudf/cudf/tests/test_dlpack.py index 20c24bd7564..187a5524e8e 100644 --- a/python/cudf/cudf/tests/test_dlpack.py +++ b/python/cudf/cudf/tests/test_dlpack.py @@ -1,4 +1,4 @@ -# Copyright (c) 2019-2024, NVIDIA CORPORATION. +# Copyright (c) 2019-2025, NVIDIA CORPORATION. import itertools from contextlib import ExitStack as does_not_raise @@ -140,7 +140,7 @@ def test_to_dlpack_cupy_2d(data_2d): def test_from_dlpack_cupy_1d(data_1d): cupy_array = cupy.array(data_1d) cupy_host_array = cupy_array.get() - dlt = cupy_array.toDlpack() + dlt = cupy_array.__dlpack__() gs = cudf.from_dlpack(dlt) cudf_host_array = gs.to_numpy(na_value=np.nan) @@ -151,7 +151,7 @@ def test_from_dlpack_cupy_1d(data_1d): def test_from_dlpack_cupy_2d(data_2d): cupy_array = cupy.array(data_2d, order="F") cupy_host_array = cupy_array.get().flatten() - dlt = cupy_array.toDlpack() + dlt = cupy_array.__dlpack__() gdf = cudf.from_dlpack(dlt) cudf_host_array = np.array(gdf.to_pandas()).flatten()