-
Notifications
You must be signed in to change notification settings - Fork 65
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add cucim.skimage.morphology.medial_axis (#342)
closes #336 This PR adds a function for skeletonization of 2D images via the medial axis transform. It should be reviewed after #318 is merged. The new commits only start from 19a6fed. There is one sequential component to this algorithm that still must be run on the CPU, but the majority of the computations are on the GPU and acceleration is good. I will add benchmark results here soon. Authors: - Gregory Lee (https://github.com/grlee77) - https://github.com/jakirkham Approvers: - https://github.com/jakirkham - Gigon Bae (https://github.com/gigony) URL: #342
- Loading branch information
Showing
4 changed files
with
413 additions
and
27 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
67 changes: 67 additions & 0 deletions
67
python/cucim/src/cucim/skimage/morphology/_medial_axis_lookup.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
import numpy as np | ||
|
||
# medial axis lookup tables (independent of image content) | ||
# | ||
# Note: lookup table generated using scikit-image code from | ||
# https://github.com/scikit-image/scikit-image/blob/38b595d60befe3a0b4c0742995b9737200a079c6/skimage/morphology/_skeletonize.py#L449-L458 # noqa | ||
|
||
lookup_table = np.array( | ||
[ | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, | ||
0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, | ||
0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, | ||
0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, | ||
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, | ||
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | ||
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, | ||
0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, | ||
1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | ||
0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, | ||
0, 0, 0, 0, 0, 0 | ||
], | ||
dtype=bool, | ||
) | ||
|
||
|
||
cornerness_table = np.array( | ||
[ | ||
9, 8, 8, 7, 8, 7, 7, 6, 8, 7, 7, 6, 7, 6, 6, 5, 8, 7, 7, 6, 7, 6, | ||
6, 5, 7, 6, 6, 5, 6, 5, 5, 4, 8, 7, 7, 6, 7, 6, 6, 5, 7, 6, 6, 5, | ||
6, 5, 5, 4, 7, 6, 6, 5, 6, 5, 5, 4, 6, 5, 5, 4, 5, 4, 4, 3, 8, 7, | ||
7, 6, 7, 6, 6, 5, 7, 6, 6, 5, 6, 5, 5, 4, 7, 6, 6, 5, 6, 5, 5, 4, | ||
6, 5, 5, 4, 5, 4, 4, 3, 7, 6, 6, 5, 6, 5, 5, 4, 6, 5, 5, 4, 5, 4, | ||
4, 3, 6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 4, 3, 3, 2, 8, 7, 7, 6, | ||
7, 6, 6, 5, 7, 6, 6, 5, 6, 5, 5, 4, 7, 6, 6, 5, 6, 5, 5, 4, 6, 5, | ||
5, 4, 5, 4, 4, 3, 7, 6, 6, 5, 6, 5, 5, 4, 6, 5, 5, 4, 5, 4, 4, 3, | ||
6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 4, 3, 3, 2, 7, 6, 6, 5, 6, 5, | ||
5, 4, 6, 5, 5, 4, 5, 4, 4, 3, 6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, | ||
4, 3, 3, 2, 6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 4, 3, 3, 2, 5, 4, | ||
4, 3, 4, 3, 3, 2, 4, 3, 3, 2, 3, 2, 2, 1, 8, 7, 7, 6, 7, 6, 6, 5, | ||
7, 6, 6, 5, 6, 5, 5, 4, 7, 6, 6, 5, 6, 5, 5, 4, 6, 5, 5, 4, 5, 4, | ||
4, 3, 7, 6, 6, 5, 6, 5, 5, 4, 6, 5, 5, 4, 5, 4, 4, 3, 6, 5, 5, 4, | ||
5, 4, 4, 3, 5, 4, 4, 3, 4, 3, 3, 2, 7, 6, 6, 5, 6, 5, 5, 4, 6, 5, | ||
5, 4, 5, 4, 4, 3, 6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 4, 3, 3, 2, | ||
6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 4, 3, 3, 2, 5, 4, 4, 3, 4, 3, | ||
3, 2, 4, 3, 3, 2, 3, 2, 2, 1, 7, 6, 6, 5, 6, 5, 5, 4, 6, 5, 5, 4, | ||
5, 4, 4, 3, 6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 4, 3, 3, 2, 6, 5, | ||
5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 4, 3, 3, 2, 5, 4, 4, 3, 4, 3, 3, 2, | ||
4, 3, 3, 2, 3, 2, 2, 1, 6, 5, 5, 4, 5, 4, 4, 3, 5, 4, 4, 3, 4, 3, | ||
3, 2, 5, 4, 4, 3, 4, 3, 3, 2, 4, 3, 3, 2, 3, 2, 2, 1, 5, 4, 4, 3, | ||
4, 3, 3, 2, 4, 3, 3, 2, 3, 2, 2, 1, 4, 3, 3, 2, 3, 2, 2, 1, 3, 2, | ||
2, 1, 2, 1, 1, 0 | ||
], | ||
dtype=np.uint8, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.