Publish Date | Title | Authors | URL | Abstract |
---|---|---|---|---|
2025-02-13 | A Physics-Informed Deep Learning Model for MRI Brain Motion Correction | Mojtaba Safari, Shansong Wang, Zach Eidex, Richard Qiu, Chih-Wei Chang, David S. Yu, Xiaofeng Yang | Link | Background: MRI is crucial for brain imaging but is highly susceptible to motion artifacts due to long acquisition times. This study introduces PI-MoCoNet, a physics-informed motion correction network that integrates spatial and k-space information to remove motion artifacts without explicit motion parameter estimation, enhancing image fidelity and diagnostic reliability. Materials and Methods: PI-MoCoNet consists of a motion detection network (U-net with spatial averaging) to identify corrupted k-space lines and a motion correction network (U-net with Swin Transformer blocks) to reconstruct motion-free images. The correction is guided by three loss functions: reconstruction (L1), perceptual (LPIPS), and data consistency (Ldc). Motion artifacts were simulated via rigid phase encoding perturbations and evaluated on IXI and MR-ART datasets against Pix2Pix, CycleGAN, and U-net using PSNR, SSIM, and NMSE. Results: PI-MoCoNet significantly improved image quality. On IXI, for minor artifacts, PSNR increased from 34.15 dB to 45.95 dB, SSIM from 0.87 to 1.00, and NMSE reduced from 0.55% to 0.04%. For moderate artifacts, PSNR improved from 30.23 dB to 42.16 dB, SSIM from 0.80 to 0.99, and NMSE from 1.32% to 0.09%. For heavy artifacts, PSNR rose from 27.99 dB to 36.01 dB, SSIM from 0.75 to 0.97, and NMSE decreased from 2.21% to 0.36%. On MR-ART, PI-MoCoNet achieved PSNR gains of ~10 dB and SSIM improvements of up to 0.20, with NMSE reductions of ~6%. Ablation studies confirmed the importance of data consistency and perceptual losses, yielding a 1 dB PSNR gain and 0.17% NMSE reduction. Conclusions: PI-MoCoNet effectively mitigates motion artifacts in brain MRI, outperforming existing methods. Its ability to integrate spatial and k-space information makes it a promising tool for clinical use in motion-prone settings. Code: https://github.com/mosaf/PI-MoCoNet.git. |
2025-02-13 | Revisiting Euclidean Alignment for Transfer Learning in EEG-Based Brain-Computer Interfaces | Dongrui Wu | Link | Due to the non-stationarity and large individual differences of EEG signals, EEG-based brain-computer interfaces (BCIs) usually need subject-specific calibration to tailor the decoding algorithm for each new subject, which is time-consuming and user-unfriendly, hindering their real-world applications. Transfer learning (TL) has been extensively used to expedite the calibration, by making use of EEG data from other subjects/sessions. An important consideration in TL for EEG-based BCIs is to reduce the data distribution discrepancies among different subjects/session, to avoid negative transfer. Euclidean alignment (EA) was proposed in 2020 to address this challenge. Numerous experiments from 10 different BCI paradigms demonstrated its effectiveness and efficiency. This paper revisits the EA, explaining its procedure and correct usage, introducing its applications and extensions, and pointing out potential new research directions. It should be very helpful to BCI researchers, especially those who are working on EEG signal decoding. |
2025-02-13 | $^{18}$F-FDG brain PET hypometabolism in post-SARS-CoV-2 infection: substrate for persistent/delayed disorders? | Eric Guedj, Matthieu Million, Pierre Dudouet, Hervé Tissot-Dupont, Fabienne Bregeon, Serge Cammilleri, Didier Raoult | Link | Purpose: Several brain complications of SARS-CoV-2 infection have been reported. It has been moreover speculated that this neurotropism could potentially cause a delayed outbreak of neuropsychiatric and neurodegenerative diseases of neuroinflammatory origin. A propagation mechanism has been proposed across the cribriform plate of the ethmoid bone, from the nose to the olfactory epithelium, and possibly afterward to other limbic structures, and deeper parts of the brain including the brainstem. Methods: Review of clinical examination, and whole-brain voxel-based analysis of $^{18}$F-FDG PET metabolism in comparison with healthy subjects (p voxel<0.001, p-cluster<0.05, uncorrected), of two patients with confirmed diagnosis of SARS-CoV-2 explored at the post-viral stage of the disease. Results: Hypometabolism of the olfactory/rectus gyrus was found on the two patients, especially one with 4-week prolonged anosmia. Additional hypometabolisms were found within amygdala, hippocampus, parahippocampus, cingulate cortex, pre-/post-central gyrus, thalamus/hypothalamus, cerebellum, pons, and medulla in the other patient who complained of delayed onset of a painful syndrome. Conclusion: These preliminary findings reinforce the hypotheses of SARS-CoV-2 neurotropism through the olfactory bulb and the possible extension of this impairment to other brain structures. $^{18}$F-FDG PET hypometabolism could constitute a cerebral quantitative biomarker of this involvement. Post-viral cohort studies are required to specify the exact relationship between such hypometabolisms and the possible persistent disorders, especially involving cognitive or emotion disturbances, residual respiratory symptoms, or painful complaints. |
2025-02-13 | Biologically Plausible Brain Graph Transformer | Ciyuan Peng, Yuelong Huang, Qichao Dong, Shuo Yu, Feng Xia, Chengqi Zhang, Yaochu Jin | Link | State-of-the-art brain graph analysis methods fail to fully encode the small-world architecture of brain graphs (accompanied by the presence of hubs and functional modules), and therefore lack biological plausibility to some extent. This limitation hinders their ability to accurately represent the brain's structural and functional properties, thereby restricting the effectiveness of machine learning models in tasks such as brain disorder detection. In this work, we propose a novel Biologically Plausible Brain Graph Transformer (BioBGT) that encodes the small-world architecture inherent in brain graphs. Specifically, we present a network entanglement-based node importance encoding technique that captures the structural importance of nodes in global information propagation during brain graph communication, highlighting the biological properties of the brain structure. Furthermore, we introduce a functional module-aware self-attention to preserve the functional segregation and integration characteristics of brain graphs in the learned representations. Experimental results on three benchmark datasets demonstrate that BioBGT outperforms state-of-the-art models, enhancing biologically plausible brain graph representations for various brain graph analytical tasks |
2025-02-13 | BrainWavLM: Fine-tuning Speech Representations with Brain Responses to Language | Nishitha Vattikonda, Aditya R. Vaidya, Richard J. Antonello, Alexander G. Huth | Link | Speech encoding models use auditory representations to predict how the human brain responds to spoken language stimuli. Most performant encoding models linearly map the hidden states of artificial neural networks to brain data, but this linear restriction may limit their effectiveness. In this work, we use low-rank adaptation (LoRA) to fine-tune a WavLM-based encoding model end-to-end on a brain encoding objective, producing a model we name BrainWavLM. We show that fine-tuning across all of cortex improves average encoding performance with greater stability than without LoRA. This improvement comes at the expense of low-level regions like auditory cortex (AC), but selectively fine-tuning on these areas improves performance in AC, while largely retaining gains made in the rest of cortex. Fine-tuned models generalized across subjects, indicating that they learned robust brain-like representations of the speech stimuli. Finally, by training linear probes, we showed that the brain data strengthened semantic representations in the speech model without any explicit annotations. Our results demonstrate that brain fine-tuning produces best-in-class speech encoding models, and that non-linear methods have the potential to bridge the gap between artificial and biological representations of semantics. |
2025-02-13 | Brain in the Dark: Design Principles for Neuromimetic Inference under the Free Energy Principle | Mehran H. Bazargani, Szymon Urbas, Karl Friston | Link | Deep learning has revolutionised artificial intelligence (AI) by enabling automatic feature extraction and function approximation from raw data. However, it faces challenges such as a lack of out-of-distribution generalisation, catastrophic forgetting and poor interpretability. In contrast, biological neural networks, such as those in the human brain, do not suffer from these issues, inspiring AI researchers to explore neuromimetic deep learning, which aims to replicate brain mechanisms within AI models. A foundational theory for this approach is the Free Energy Principle (FEP), which despite its potential, is often considered too complex to understand and implement in AI as it requires an interdisciplinary understanding across a variety of fields. This paper seeks to demystify the FEP and provide a comprehensive framework for designing neuromimetic models with human-like perception capabilities. We present a roadmap for implementing these models and a Pytorch code repository for applying FEP in a predictive coding network. |
2025-02-12 | Deep EEG Super-Resolution: Upsampling EEG Spatial Resolution with Generative Adversarial Networks | Isaac Corley, Yufei Huang | Link | Electroencephalography (EEG) activity contains a wealth of information about what is happening within the human brain. Recording more of this data has the potential to unlock endless future applications. However, the cost of EEG hardware is increasingly expensive based upon the number of EEG channels being recorded simultaneously. We combat this problem in this paper by proposing a novel deep EEG super-resolution (SR) approach based on Generative Adversarial Networks (GANs). This approach can produce high spatial resolution EEG data from low resolution samples, by generating channel-wise upsampled data to effectively interpolate numerous missing channels, thus reducing the need for expensive EEG equipment. We tested the performance using an EEG dataset from a mental imagery task. Our proposed GAN model provided 10^4 fold and 10^2 fold reduction in mean-squared error (MSE) and mean-absolute error (MAE), respectively, over the baseline bicubic interpolation method. We further validate our method by training a classifier on the original classification task, which displayed minimal loss in accuracy while using the super-resolved data. The proposed SR EEG by GAN is a promising approach to improve the spatial resolution of low density EEG headsets. |
2025-02-12 | Exploring Test Time Adaptation for Subcortical Segmentation of the Fetal Brain in 3D Ultrasound | Joshua Omolegan, Pak Hei Yeung, Madeleine K. Wyburd, Linde Hesse, Monique Haak, Intergrowth-21st Consortium, Ana I. L. Namburete, Nicola K. Dinsdale | Link | Monitoring the growth of subcortical regions of the fetal brain in ultrasound (US) images can help identify the presence of abnormal development. Manually segmenting these regions is a challenging task, but recent work has shown that it can be automated using deep learning. However, applying pretrained models to unseen freehand US volumes often leads to a degradation of performance due to the vast differences in acquisition and alignment. In this work, we first demonstrate that test time adaptation (TTA) can be used to improve model performance in the presence of both real and simulated domain shifts. We further propose a novel TTA method by incorporating a normative atlas as a prior for anatomy. In the presence of various types of domain shifts, we benchmark the performance of different TTA methods and demonstrate the improvements brought by our proposed approach, which may further facilitate automated monitoring of fetal brain development. Our code is available at https://github.com/joshuaomolegan/TTA-for-3D-Fetal-Subcortical-Segmentation. |
2025-02-12 | HistoSmith: Single-Stage Histology Image-Label Generation via Conditional Latent Diffusion for Enhanced Cell Segmentation and Classification | Valentina Vadori, Jean-Marie Graïc, Antonella Peruffo, Livio Finos, Ujwala Kiran Chaudhari, Enrico Grisan | Link | Precise segmentation and classification of cell instances are vital for analyzing the tissue microenvironment in histology images, supporting medical diagnosis, prognosis, treatment planning, and studies of brain cytoarchitecture. However, the creation of high-quality annotated datasets for training remains a major challenge. This study introduces a novel single-stage approach (HistoSmith) for generating image-label pairs to augment histology datasets. Unlike state-of-the-art methods that utilize diffusion models with separate components for label and image generation, our approach employs a latent diffusion model to learn the joint distribution of cellular layouts, classification masks, and histology images. This model enables tailored data generation by conditioning on user-defined parameters such as cell types, quantities, and tissue types. Trained on the Conic H&E histopathology dataset and the Nissl-stained CytoDArk0 dataset, the model generates realistic and diverse labeled samples. Experimental results demonstrate improvements in cell instance segmentation and classification, particularly for underrepresented cell types like neutrophils in the Conic dataset. These findings underscore the potential of our approach to address data scarcity challenges. |
2025-02-13 | Rhythmic sharing: A bio-inspired paradigm for zero-shot adaptation and learning in neural networks | Hoony Kang, Wolfgang Losert | Link | The brain can rapidly adapt to new contexts and learn from limited data, a coveted characteristic that artificial intelligence algorithms have struggled to mimic. Inspired by oscillatory rhythms of the mechanical structures of neural cells, we developed a learning paradigm that is based on oscillations in link strengths and associates learning with the coordination of these oscillations. We find that this paradigm yields rapid adaptation and learning in artificial neural networks. Link oscillations can rapidly change coordination, endowing the network with the ability to sense subtle context changes in an unsupervised manner. In other words, the network generates the missing contextual tokens required to perform as a generalist AI architecture capable of predicting dynamics in multiple contexts. Oscillations also allow the network to extrapolate dynamics to never-seen-before contexts. These capabilities make our learning paradigm a powerful starting point for novel models of learning and cognition. Furthermore, learning through link coordination is agnostic to the specifics of the neural network architecture, hence our study opens the door for introducing rapid adaptation and learning capabilities into leading AI models. |
Publish Date | Title | Authors | URL | Abstract |
---|---|---|---|---|
2025-02-13 | Revisiting Euclidean Alignment for Transfer Learning in EEG-Based Brain-Computer Interfaces | Dongrui Wu | Link | Due to the non-stationarity and large individual differences of EEG signals, EEG-based brain-computer interfaces (BCIs) usually need subject-specific calibration to tailor the decoding algorithm for each new subject, which is time-consuming and user-unfriendly, hindering their real-world applications. Transfer learning (TL) has been extensively used to expedite the calibration, by making use of EEG data from other subjects/sessions. An important consideration in TL for EEG-based BCIs is to reduce the data distribution discrepancies among different subjects/session, to avoid negative transfer. Euclidean alignment (EA) was proposed in 2020 to address this challenge. Numerous experiments from 10 different BCI paradigms demonstrated its effectiveness and efficiency. This paper revisits the EA, explaining its procedure and correct usage, introducing its applications and extensions, and pointing out potential new research directions. It should be very helpful to BCI researchers, especially those who are working on EEG signal decoding. |
2025-02-12 | Deep EEG Super-Resolution: Upsampling EEG Spatial Resolution with Generative Adversarial Networks | Isaac Corley, Yufei Huang | Link | Electroencephalography (EEG) activity contains a wealth of information about what is happening within the human brain. Recording more of this data has the potential to unlock endless future applications. However, the cost of EEG hardware is increasingly expensive based upon the number of EEG channels being recorded simultaneously. We combat this problem in this paper by proposing a novel deep EEG super-resolution (SR) approach based on Generative Adversarial Networks (GANs). This approach can produce high spatial resolution EEG data from low resolution samples, by generating channel-wise upsampled data to effectively interpolate numerous missing channels, thus reducing the need for expensive EEG equipment. We tested the performance using an EEG dataset from a mental imagery task. Our proposed GAN model provided 10^4 fold and 10^2 fold reduction in mean-squared error (MSE) and mean-absolute error (MAE), respectively, over the baseline bicubic interpolation method. We further validate our method by training a classifier on the original classification task, which displayed minimal loss in accuracy while using the super-resolved data. The proposed SR EEG by GAN is a promising approach to improve the spatial resolution of low density EEG headsets. |
2025-02-12 | EEG Artifact Detection and Correction with Deep Autoencoders | David Aquilué-Llorens, Aureli Soria-Frisch | Link | EEG signals convey important information about brain activity both in healthy and pathological conditions. However, they are inherently noisy, which poses significant challenges for accurate analysis and interpretation. Traditional EEG artifact removal methods, while effective, often require extensive expert intervention. This study presents LSTEEG, a novel LSTM-based autoencoder designed for the detection and correction of artifacts in EEG signals. Leveraging deep learning, particularly LSTM layers, LSTEEG captures non-linear dependencies in sequential EEG data. LSTEEG demonstrates superior performance in both artifact detection and correction tasks compared to other state-of-the-art convolutional autoencoders. Our methodology enhances the interpretability and utility of the autoencoder's latent space, enabling data-driven automated artefact removal in EEG its application in downstream tasks. This research advances the field of efficient and accurate multi-channel EEG preprocessing, and promotes the implementation and usage of automated EEG analysis pipelines for brain health applications. |
2025-02-11 | From Brainwaves to Brain Scans: A Robust Neural Network for EEG-to-fMRI Synthesis | Kristofer Grover Roos, Quan Huu Cap, Atsushi Fukuda | Link | While functional magnetic resonance imaging (fMRI) offers rich spatial resolution, it is limited by high operational costs and significant infrastructural demands. In contrast, electroencephalography (EEG) provides millisecond-level precision in capturing electrical activity but lacks the spatial resolution necessary for precise neural localization. To bridge these gaps, we introduce E2fNet, a simple yet effective deep learning model for synthesizing fMRI images from low-cost EEG data. E2fNet is specifically designed to capture and translate meaningful features from EEG across electrode channels into accurate fMRI representations. Extensive evaluations across three datasets demonstrate that E2fNet consistently outperforms existing methods, achieving state-of-the-art results in terms of the structural similarity index measure (SSIM). Our findings suggest that E2fNet is a promising, cost-effective solution for enhancing neuroimaging capabilities. The code is available at https://github.com/kgr20/E2fNet. |
2025-02-11 | From Thought to Action: How a Hierarchy of Neural Dynamics Supports Language Production | Mingfang, Zhang, Jarod Lévy, Stéphane d'Ascoli, Jérémy Rapin, F. -Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean-Rémi King | Link | Humans effortlessly communicate their thoughts through intricate sequences of motor actions. Yet, the neural processes that coordinate language production remain largely unknown, in part because speech artifacts limit the use of neuroimaging. To elucidate the unfolding of language production in the brain, we investigate with magnetoencephalography (MEG) and electroencephalography (EEG) the neurophysiological activity of 35 skilled typists, while they typed sentences on a keyboard. This approach confirms the hierarchical predictions of linguistic theories: the neural activity preceding the production of each word is marked by the sequential rise and fall of context-, word-, syllable-, and letter-level representations. Remarkably, each of these neural representations is maintained over long time periods within each level of the language hierarchy. This phenomenon results in a superposition of successive representations that is supported by a hierarchy of dynamic neural codes. Overall, these findings provide a precise computational breakdown of the neural dynamics that coordinate the production of language in the human brain. |
2025-02-11 | Emotional EEG Classification using Upscaled Connectivity Matrices | Chae-Won Lee, Jong-Seok Lee | Link | In recent studies of emotional EEG classification, connectivity matrices have been successfully employed as input to convolutional neural networks (CNNs), which can effectively consider inter-regional interaction patterns in EEG. However, we find that such an approach has a limitation that important patterns in connectivity matrices may be lost during the convolutional operations in CNNs. To resolve this issue, we propose and validate an idea to upscale the connectivity matrices to strengthen the local patterns. Experimental results demonstrate that this simple idea can significantly enhance the classification performance. |
2025-02-10 | Retrieving Filter Spectra in CNN for Explainable Sleep Stage Classification | Stephan Goerttler, Yucheng Wang, Emadeldeen Eldele, Fei He, Min Wu | Link | Despite significant advances in deep learning-based sleep stage classification, the clinical adoption of automatic classification models remains slow. One key challenge is the lack of explainability, as many models function as black boxes with millions of parameters. In response, recent work has increasingly focussed on enhancing model explainability. This study contributes to these efforts by globally explaining spectral processing of individual EEG channels. Specifically, we introduce a method to retrieve the filter spectrum of low-level convolutional feature extraction and compare it with the classification-relevant spectral information in the data. We evaluate our approach on the MSA-CNN model using the ISRUC-S3 and Sleep-EDF-20 datasets. Our findings show that spectral processing plays a significant role in the lower frequency bands. In addition, comparing the correlation between filter spectrum and data-based spectral information with univariate performance indicates that the model naturally prioritises the most informative channels in a multimodal setting. We specify how these insights can be leveraged to enhance model performance. The code for the filter spectrum retrieval and its analysis is available at https://github.com/sgoerttler/MSA-CNN. |
2025-02-10 | FEMBA: Efficient and Scalable EEG Analysis with a Bidirectional Mamba Foundation Model | Anna Tegon, Thorir Mar Ingolfsson, Xiaying Wang, Luca Benini, Yawei Li | Link | Accurate and efficient electroencephalography (EEG) analysis is essential for detecting seizures and artifacts in long-term monitoring, with applications spanning hospital diagnostics to wearable health devices. Robust EEG analytics have the potential to greatly improve patient care. However, traditional deep learning models, especially Transformer-based architectures, are hindered by their quadratic time and memory complexity, making them less suitable for resource-constrained environments. To address these challenges, we present FEMBA (Foundational EEG Mamba + Bidirectional Architecture), a novel self-supervised framework that establishes new efficiency benchmarks for EEG analysis through bidirectional state-space modeling. Unlike Transformer-based models, which incur quadratic time and memory complexity, FEMBA scales linearly with sequence length, enabling more scalable and efficient processing of extended EEG recordings. Trained on over 21,000 hours of unlabeled EEG and fine-tuned on three downstream tasks, FEMBA achieves competitive performance in comparison with transformer models, with significantly lower computational cost. Specifically, it reaches 81.82% balanced accuracy (0.8921 AUROC) on TUAB and 0.949 AUROC on TUAR, while a tiny 7.8M-parameter variant demonstrates viability for resource-constrained devices. These results pave the way for scalable, general-purpose EEG analytics in both clinical and highlight FEMBA as a promising candidate for wearable applications. |
2025-02-09 | Neurophysiological correlates to the human brain complexity through |
Dimitri Marques Abramov, Daniel de Freitas Quintanilha, Henrique Santos Lima, Roozemeria Pereira Costa, Carla Kamil-Leite, Vladimir V. Lazarev, Constantino Tsallis | Link | The prospects of assessing neural complexity (NC) by |
2025-02-09 | Protecting Intellectual Property of EEG-based Neural Networks with Watermarking | Ahmed Abdelaziz, Ahmed Fathi, Ahmed Fares | Link | EEG-based neural networks, pivotal in medical diagnosis and brain-computer interfaces, face significant intellectual property (IP) risks due to their reliance on sensitive neurophysiological data and resource-intensive development. Current watermarking methods, particularly those using abstract trigger sets, lack robust authentication and fail to address the unique challenges of EEG models. This paper introduces a cryptographic wonder filter-based watermarking framework tailored for EEG-based neural networks. Leveraging collision-resistant hashing and public-key encryption, the wonder filter embeds the watermark during training, ensuring minimal distortion ( |
Publish Date | Title | Authors | URL | Abstract |
---|---|---|---|---|
2025-02-13 | Revisiting Euclidean Alignment for Transfer Learning in EEG-Based Brain-Computer Interfaces | Dongrui Wu | Link | Due to the non-stationarity and large individual differences of EEG signals, EEG-based brain-computer interfaces (BCIs) usually need subject-specific calibration to tailor the decoding algorithm for each new subject, which is time-consuming and user-unfriendly, hindering their real-world applications. Transfer learning (TL) has been extensively used to expedite the calibration, by making use of EEG data from other subjects/sessions. An important consideration in TL for EEG-based BCIs is to reduce the data distribution discrepancies among different subjects/session, to avoid negative transfer. Euclidean alignment (EA) was proposed in 2020 to address this challenge. Numerous experiments from 10 different BCI paradigms demonstrated its effectiveness and efficiency. This paper revisits the EA, explaining its procedure and correct usage, introducing its applications and extensions, and pointing out potential new research directions. It should be very helpful to BCI researchers, especially those who are working on EEG signal decoding. |
2025-02-12 | Uncertainty Aware Human-machine Collaboration in Camouflaged Object Detection | Ziyue Yang, Kehan Wang, Yuhang Ming, Yong Peng, Han Yang, Qiong Chen, Wanzeng Kong | Link | Camouflaged Object Detection (COD), the task of identifying objects concealed within their environments, has seen rapid growth due to its wide range of practical applications. A key step toward developing trustworthy COD systems is the estimation and effective utilization of uncertainty. In this work, we propose a human-machine collaboration framework for classifying the presence of camouflaged objects, leveraging the complementary strengths of computer vision (CV) models and noninvasive brain-computer interfaces (BCIs). Our approach introduces a multiview backbone to estimate uncertainty in CV model predictions, utilizes this uncertainty during training to improve efficiency, and defers low-confidence cases to human evaluation via RSVP-based BCIs during testing for more reliable decision-making. We evaluated the framework in the CAMO dataset, achieving state-of-the-art results with an average improvement of 4.56\% in balanced accuracy (BA) and 3.66\% in the F1 score compared to existing methods. For the best-performing participants, the improvements reached 7.6\% in BA and 6.66\% in the F1 score. Analysis of the training process revealed a strong correlation between our confidence measures and precision, while an ablation study confirmed the effectiveness of the proposed training policy and the human-machine collaboration strategy. In general, this work reduces human cognitive load, improves system reliability, and provides a strong foundation for advancements in real-world COD applications and human-computer interaction. Our code and data are available at: https://github.com/ziyuey/Uncertainty-aware-human-machine-collaboration-in-camouflaged-object-identification. |
2025-02-07 | Geometric Machine Learning on EEG Signals | Benjamin J. Choi | Link | Brain-computer interfaces (BCIs) offer transformative potential, but decoding neural signals presents significant challenges. The core premise of this paper is built around demonstrating methods to elucidate the underlying low-dimensional geometric structure present in high-dimensional brainwave data in order to assist in downstream BCI-related neural classification tasks. We demonstrate two pipelines related to electroencephalography (EEG) signal processing: (1) a preliminary pipeline removing noise from individual EEG channels, and (2) a downstream manifold learning pipeline uncovering geometric structure across networks of EEG channels. We conduct preliminary validation using two EEG datasets and situate our demonstration in the context of the BCI-relevant imagined digit decoding problem. Our preliminary pipeline uses an attention-based EEG filtration network to extract clean signal from individual EEG channels. Our primary pipeline uses a fast Fourier transform, a Laplacian eigenmap, a discrete analog of Ricci flow via Ollivier's notion of Ricci curvature, and a graph convolutional network to perform dimensionality reduction on high-dimensional multi-channel EEG data in order to enable regularizable downstream classification. Our system achieves competitive performance with existing signal processing and classification benchmarks; we demonstrate a mean test correlation coefficient of >0.95 at 2 dB on semi-synthetic neural denoising and a downstream EEG-based classification accuracy of 0.97 on distinguishing digit- versus non-digit thoughts. Results are preliminary and our geometric machine learning pipeline should be validated by more extensive follow-up studies; generalizing these results to larger inter-subject sample sizes, different hardware systems, and broader use cases will be crucial. |
2025-02-06 | Transfer Learning for Covert Speech Classification Using EEG Hilbert Envelope and Temporal Fine Structure | Saravanakumar Duraisamy, Mateusz Dubiel, Maurice Rekrut, Luis A. Leiva | Link | Brain-Computer Interfaces (BCIs) can decode imagined speech from neural activity. However, these systems typically require extensive training sessions where participants imaginedly repeat words, leading to mental fatigue and difficulties identifying the onset of words, especially when imagining sequences of words. This paper addresses these challenges by transferring a classifier trained in overt speech data to covert speech classification. We used electroencephalogram (EEG) features derived from the Hilbert envelope and temporal fine structure, and used them to train a bidirectional long-short-term memory (BiLSTM) model for classification. Our method reduces the burden of extensive training and achieves state-of-the-art classification accuracy: 86.44% for overt speech and 79.82% for covert speech using the overt speech classifier. |
2025-02-07 | Decoding Human Attentive States from Spatial-temporal EEG Patches Using Transformers | Yi Ding, Joon Hei Lee, Shuailei Zhang, Tianze Luo, Cuntai Guan | Link | Learning the spatial topology of electroencephalogram (EEG) channels and their temporal dynamics is crucial for decoding attention states. This paper introduces EEG-PatchFormer, a transformer-based deep learning framework designed specifically for EEG attention classification in Brain-Computer Interface (BCI) applications. By integrating a Temporal CNN for frequency-based EEG feature extraction, a pointwise CNN for feature enhancement, and Spatial and Temporal Patching modules for organizing features into spatial-temporal patches, EEG-PatchFormer jointly learns spatial-temporal information from EEG data. Leveraging the global learning capabilities of the self-attention mechanism, it captures essential features across brain regions over time, thereby enhancing EEG data decoding performance. Demonstrating superior performance, EEG-PatchFormer surpasses existing benchmarks in accuracy, area under the ROC curve (AUC), and macro-F1 score on a public cognitive attention dataset. The code can be found via: https://github.com/yi-ding-cs/EEG-PatchFormer . |
2025-02-05 | Fine-Tuning Strategies for Continual Online EEG Motor Imagery Decoding: Insights from a Large-Scale Longitudinal Study | Martin Wimpff, Bruno Aristimunha, Sylvain Chevallier, Bin Yang | Link | This study investigates continual fine-tuning strategies for deep learning in online longitudinal electroencephalography (EEG) motor imagery (MI) decoding within a causal setting involving a large user group and multiple sessions per participant. We are the first to explore such strategies across a large user group, as longitudinal adaptation is typically studied in the single-subject setting with a single adaptation strategy, which limits the ability to generalize findings. First, we examine the impact of different fine-tuning approaches on decoder performance and stability. Building on this, we integrate online test-time adaptation (OTTA) to adapt the model during deployment, complementing the effects of prior fine-tuning. Our findings demonstrate that fine-tuning that successively builds on prior subject-specific information improves both performance and stability, while OTTA effectively adapts the model to evolving data distributions across consecutive sessions, enabling calibration-free operation. These results offer valuable insights and recommendations for future research in longitudinal online MI decoding and highlight the importance of combining domain adaptation strategies for improving BCI performance in real-world applications. Clinical Relevance: Our investigation enables more stable and efficient long-term motor imagery decoding, which is critical for neurorehabilitation and assistive technologies. |
2025-02-05 | Multimodal Brain-Computer Interfaces: AI-powered Decoding Methodologies | Siyang Li, Hongbin Wang, Xiaoqing Chen, Dongrui Wu | Link | Brain-computer interfaces (BCIs) enable direct communication between the brain and external devices. This review highlights the core decoding algorithms that enable multimodal BCIs, including a dissection of the elements, a unified view of diversified approaches, and a comprehensive analysis of the present state of the field. We emphasize algorithmic advancements in cross-modality mapping, sequential modeling, besides classic multi-modality fusion, illustrating how these novel AI approaches enhance decoding of brain data. The current literature of BCI applications on visual, speech, and affective decoding are comprehensively explored. Looking forward, we draw attention on the impact of emerging architectures like multimodal Transformers, and discuss challenges such as brain data heterogeneity and common errors. This review also serves as a bridge in this interdisciplinary field for experts with neuroscience background and experts that study AI, aiming to provide a comprehensive understanding for AI-powered multimodal BCIs. |
2025-01-30 | ISAM-MTL: Cross-subject multi-task learning model with identifiable spikes and associative memory networks | Junyan Li, Bin Hu, Zhi-Hong Guan | Link | Cross-subject variability in EEG degrades performance of current deep learning models, limiting the development of brain-computer interface (BCI). This paper proposes ISAM-MTL, which is a multi-task learning (MTL) EEG classification model based on identifiable spiking (IS) representations and associative memory (AM) networks. The proposed model treats EEG classification of each subject as an independent task and leverages cross-subject data training to facilitate feature sharing across subjects. ISAM-MTL consists of a spiking feature extractor that captures shared features across subjects and a subject-specific bidirectional associative memory network that is trained by Hebbian learning for efficient and fast within-subject EEG classification. ISAM-MTL integrates learned spiking neural representations with bidirectional associative memory for cross-subject EEG classification. The model employs label-guided variational inference to construct identifiable spike representations, enhancing classification accuracy. Experimental results on two BCI Competition datasets demonstrate that ISAM-MTL improves the average accuracy of cross-subject EEG classification while reducing performance variability among subjects. The model further exhibits the characteristics of few-shot learning and identifiable neural activity beneath EEG, enabling rapid and interpretable calibration for BCI systems. |
2025-01-29 | Neural Spelling: A Spell-Based BCI System for Language Neural Decoding | Xiaowei Jiang, Charles Zhou, Yiqun Duan, Ziyi Zhao, Thomas Do, Chin-Teng Lin | Link | Brain-computer interfaces (BCIs) present a promising avenue by translating neural activity directly into text, eliminating the need for physical actions. However, existing non-invasive BCI systems have not successfully covered the entire alphabet, limiting their practicality. In this paper, we propose a novel non-invasive EEG-based BCI system with Curriculum-based Neural Spelling Framework, which recognizes all 26 alphabet letters by decoding neural signals associated with handwriting first, and then apply a Generative AI (GenAI) to enhance spell-based neural language decoding tasks. Our approach combines the ease of handwriting with the accessibility of EEG technology, utilizing advanced neural decoding algorithms and pre-trained large language models (LLMs) to translate EEG patterns into text with high accuracy. This system show how GenAI can improve the performance of typical spelling-based neural language decoding task, and addresses the limitations of previous methods, offering a scalable and user-friendly solution for individuals with communication impairments, thereby enhancing inclusive communication options. |
2025-01-29 | EMD-Fuzzy: An Empirical Mode Decomposition Based Fuzzy Model for Cross-Stimulus Transfer Learning of SSVEP | Beining Cao, Xiaowei Jiang, Daniel Leong, Charlie Li-Ting Tsai, Yu-Cheng Chang, Thomas Do, Chin-Teng | Link | The Brain-Computer Interface (BCI) enables direct brain-to-device communication, with the Steady-State Visual Evoked Potential (SSVEP) paradigm favored for its stability and high accuracy across various fields. In SSVEP BCI systems, supervised learning models significantly enhance performance over unsupervised models, achieving higher accuracy in less time. However, prolonged data collection can cause user fatigue and even trigger photosensitive epilepsy, creating a negative user experience. Thus, reducing calibration time is crucial. To address this, Cross-Stimulus transfer learning (CSTL) can shorten calibration by utilizing only partial frequencies. Traditional CSTL methods, affected by time-domain impulse response variations, are suitable only for adjacent frequency transfers, limiting their general applicability. We introduce an Empirical Mode Decomposition (EMD) Based Fuzzy Model (EMD-Fuzzy), which employs EMD to extract crucial frequency information and achieves stimulus transfer in the frequency domain through Fast Fourier Transform (FFT) to mitigate time-domain differences. Combined with a Fuzzy Decoder that uses fuzzy logic for representation learning, our approach delivers promising preliminary results in offline tests and state-of-the-art performance. With only 4 frequencies, our method achieved an accuracy of 82.75% (16.30%) and an information transfer rate (ITR) of 186.56 (52.09) bits/min on the 40-target Benchmark dataset. In online tests, our method demonstrates robust efficacy, achieving an averaged accuracy of 86.30% (6.18%) across 7 subjects. This performance underscores the effectiveness of integrating EMD and fuzzy logic into EEG decoding for CSTL and highlights our method's potential in real-time applications where consistent and reliable decoding is crucial. |
Publish Date | Title | Authors | URL | Abstract |
---|---|---|---|---|
2025-02-12 | Neuronal Correlates of Semantic Event Classes during Presentation of Complex Naturalistic Stimuli: Anatomical Patterns, Context-Sensitivity, and Potential Impact on shared Human-Robot Ontologies | Florian Ahrens, Mihai Pomarlan, Daniel Beßler, Michael Beetz, Manfred Herrmann | Link | The present study forms part of a research project that aims to develop cognition-enabled robotic agents with environmental interaction capabilities close to human proficiency. This approach is based on human-derived neuronal data in combination with a shared ontology to enable robots to learn from human experiences. To gain further insight into the relation between human neuronal activity patterns and ontological classes, we introduced General Linear Model (GLM) analyses on fMRI data of participants who were presented with complex naturalistic video stimuli comparable to the robot tasks. We modeled four event classes (pick, place, fetch and deliver) attached to different environmental and object-related context and employed a Representational Similarity Analysis (RSA) on associated brain activity patterns as a starting point for an automatic hierarchical clustering. Based on the default values for the Hemodynamic Response Function (HRF), the activity patterns were reliably grouped according to their parent classes of object interaction and navigation. Although fetch and deliver events were also distinguished by neuronal patterns, pick and place events demonstrated higher ambiguity with respect to neuronal activation patterns. Introducing a shorter HRF time-to-peak leads to a more reliable grouping of all four semantic classes, despite contextual factors. These data might give novel insights into the neuronal representation of complex stimuli and may enable further research in ontology validation in cognition-enabled robotics. |
2025-02-11 | From Brainwaves to Brain Scans: A Robust Neural Network for EEG-to-fMRI Synthesis | Kristofer Grover Roos, Quan Huu Cap, Atsushi Fukuda | Link | While functional magnetic resonance imaging (fMRI) offers rich spatial resolution, it is limited by high operational costs and significant infrastructural demands. In contrast, electroencephalography (EEG) provides millisecond-level precision in capturing electrical activity but lacks the spatial resolution necessary for precise neural localization. To bridge these gaps, we introduce E2fNet, a simple yet effective deep learning model for synthesizing fMRI images from low-cost EEG data. E2fNet is specifically designed to capture and translate meaningful features from EEG across electrode channels into accurate fMRI representations. Extensive evaluations across three datasets demonstrate that E2fNet consistently outperforms existing methods, achieving state-of-the-art results in terms of the structural similarity index measure (SSIM). Our findings suggest that E2fNet is a promising, cost-effective solution for enhancing neuroimaging capabilities. The code is available at https://github.com/kgr20/E2fNet. |
2025-02-10 | Direct Estimation of Pediatric Heart Rate Variability from BOLD-fMRI: A Machine Learning Approach Using Dynamic Connectivity | Abdoljalil Addeh, Karen Ardila, Rebecca J Williams, G. Bruce Pike, M. Ethan MacDonald | Link | In many pediatric fMRI studies, cardiac signals are often missing or of poor quality. A tool to extract Heart Rate Variation (HRV) waveforms directly from fMRI data, without the need for peripheral recording devices, would be highly beneficial. We developed a machine learning framework to accurately reconstruct HRV for pediatric applications. A hybrid model combining one-dimensional Convolutional Neural Networks (1D-CNN) and Gated Recurrent Units (GRU) analyzed BOLD signals from 628 ROIs, integrating past and future data. The model achieved an 8% improvement in HRV accuracy, as evidenced by enhanced performance metrics. This approach eliminates the need for peripheral photoplethysmography devices, reduces costs, and simplifies procedures in pediatric fMRI. Additionally, it improves the robustness of pediatric fMRI studies, which are more sensitive to physiological and developmental variations than those in adults. |
2025-02-09 | Topological Time Frequency Analysis of Functional Brain Signals | Moo K. Chung, Aaron F. Struck | Link | We present a novel topological framework for analyzing functional brain signals using time-frequency analysis. By integrating persistent homology with time-frequency representations, we capture multi-scale topological features that characterize the dynamic behavior of brain activity. This approach identifies 0D (connected components) and 1D (loops) topological structures in the signal's time-frequency domain, enabling robust extraction of features invariant to noise and temporal misalignments. The proposed method is demonstrated on resting-state functional magnetic resonance imaging (fMRI) data, showcasing its ability to discern critical topological patterns and provide insights into functional connectivity. This topological approach opens new avenues for analyzing complex brain signals, offering potential applications in neuroscience and clinical diagnostics. |
2025-02-08 | Multi-Site rs-fMRI Domain Alignment for Autism Spectrum Disorder Auxiliary Diagnosis Based on Hyperbolic Space | Yiqian Luo, Qiurong Chen, Yangsong Zhang | Link | In the medical field, most resting-state fMRI (rs-fMRI) data are collected from multiple hospital sites. Multi-site rs-fMRI data can increase the volume of training data, enabling auxiliary diagnostic algorithms for brain diseases to learn more accurate and stable models. However, due to the significant heterogeneity and domain shift in rs-fMRI data across different sites, the accuracy of auxiliary diagnosis remains unsatisfactory. Moreover, there has been limited exploration of multi-source domain adaptation algorithms, and the interpretability of models is often poor. To address these challenges, we proposed a domain-adaptive algorithm based on hyperbolic space embedding. Hyperbolic space is naturally suited for representing the topology of complex networks such as brain functional networks. Therefore, we embedded the brain functional network into hyperbolic space and constructed the corresponding hyperbolic space community network to effectively extract brain network representations. To address the heterogeneity of data across different sites and the issue of domain shift, we introduce a constraint loss function, HMMD (Hyperbolic Maximum Mean Discrepancy), to align the marginal distributions in the hyperbolic space. Additionally, we employ class prototype alignment to align the conditional distributions. This significantly improves the quality of brain representations and enhances diagnostic classification accuracy for Autism Spectrum Disorder (ASD). Experimental results demonstrated that the proposed algorithm is robust to multi-site heterogeneity and shows promising potential for brain network mechanism analysis. |
2025-02-07 | MindAligner: Explicit Brain Functional Alignment for Cross-Subject Visual Decoding from Limited fMRI Data | Yuqin Dai, Zhouheng Yao, Chunfeng Song, Qihao Zheng, Weijian Mai, Kunyu Peng, Shuai Lu, Wanli Ouyang, Jian Yang, Jiamin Wu | Link | Brain decoding aims to reconstruct visual perception of human subject from fMRI signals, which is crucial for understanding brain's perception mechanisms. Existing methods are confined to the single-subject paradigm due to substantial brain variability, which leads to weak generalization across individuals and incurs high training costs, exacerbated by limited availability of fMRI data. To address these challenges, we propose MindAligner, an explicit functional alignment framework for cross-subject brain decoding from limited fMRI data. The proposed MindAligner enjoys several merits. First, we learn a Brain Transfer Matrix (BTM) that projects the brain signals of an arbitrary new subject to one of the known subjects, enabling seamless use of pre-trained decoding models. Second, to facilitate reliable BTM learning, a Brain Functional Alignment module is proposed to perform soft cross-subject brain alignment under different visual stimuli with a multi-level brain alignment loss, uncovering fine-grained functional correspondences with high interpretability. Experiments indicate that MindAligner not only outperforms existing methods in visual decoding under data-limited conditions, but also provides valuable neuroscience insights in cross-subject functional analysis. The code will be made publicly available. |
2025-02-07 | A Foundational Brain Dynamics Model via Stochastic Optimal Control | Joonhyeong Park, Byoungwoo Park, Chang-Bae Bang, Jungwon Choi, Hyungjin Chung, Byung-Hoon Kim, Juho Lee | Link | We introduce a foundational model for brain dynamics that utilizes stochastic optimal control (SOC) and amortized inference. Our method features a continuous-discrete state space model (SSM) that can robustly handle the intricate and noisy nature of fMRI signals. To address computational limitations, we implement an approximation strategy grounded in the SOC framework. Additionally, we present a simulation-free latent dynamics approach that employs locally linear approximations, facilitating efficient and scalable inference. For effective representation learning, we derive an Evidence Lower Bound (ELBO) from the SOC formulation, which integrates smoothly with recent advancements in self-supervised learning (SSL), thereby promoting robust and transferable representations. Pre-trained on extensive datasets such as the UKB, our model attains state-of-the-art results across a variety of downstream tasks, including demographic prediction, trait analysis, disease diagnosis, and prognosis. Moreover, evaluating on external datasets such as HCP-A, ABIDE, and ADHD200 further validates its superior abilities and resilience across different demographic and clinical distributions. Our foundational model provides a scalable and efficient approach for deciphering brain dynamics, opening up numerous applications in neuroscience. |
2025-02-06 | Dark Brain Energy: Toward an Integrative Model of Spontaneous Slow Oscillations | ZhuQing Gong, XiNian Zuo | Link | Neural oscillations facilitate the functioning of the human brain in spatial and temporal dimensions at various frequencies. These oscillations feature a universal frequency architecture that is governed by brain anatomy, ensuring frequency specificity remains invariant across different measurement techniques. Initial magnetic resonance imaging (MRI) methodology constrained functional MRI (fMRI) investigations to a singular frequency range, thereby neglecting the frequency characteristics inherent in blood oxygen level-dependent oscillations. With advancements in MRI technology, it has become feasible to decode intricate brain activities via multi-band frequency analysis (MBFA). During the past decade, the utilization of MBFA in fMRI studies has surged, unveiling frequency-dependent characteristics of spontaneous slow oscillations (SSOs) believed to base dark energy in the brain. There remains a dearth of conclusive insights and hypotheses pertaining to the properties and functionalities of SSOs in distinct bands. We surveyed the SSO MBFA studies during the past 15 years to delineate the attributes of SSOs and enlighten their correlated functions. We further proposed a model to elucidate the hierarchical organization of multi-band SSOs by integrating their function, aimed at bridging theoretical gaps and guiding future MBFA research endeavors. |
2025-02-04 | scBIT: Integrating Single-cell Transcriptomic Data into fMRI-based Prediction for Alzheimer's Disease Diagnosis | Yu-An Huang, Yao Hu, Yue-Chao Li, Xiyue Cao, Xinyuan Li, Kay Chen Tan, Zhu-Hong You, Zhi-An Huang | Link | Functional MRI (fMRI) and single-cell transcriptomics are pivotal in Alzheimer's disease (AD) research, each providing unique insights into neural function and molecular mechanisms. However, integrating these complementary modalities remains largely unexplored. Here, we introduce scBIT, a novel method for enhancing AD prediction by combining fMRI with single-nucleus RNA (snRNA). scBIT leverages snRNA as an auxiliary modality, significantly improving fMRI-based prediction models and providing comprehensive interpretability. It employs a sampling strategy to segment snRNA data into cell-type-specific gene networks and utilizes a self-explainable graph neural network to extract critical subgraphs. Additionally, we use demographic and genetic similarities to pair snRNA and fMRI data across individuals, enabling robust cross-modal learning. Extensive experiments validate scBIT's effectiveness in revealing intricate brain region-gene associations and enhancing diagnostic prediction accuracy. By advancing brain imaging transcriptomics to the single-cell level, scBIT sheds new light on biomarker discovery in AD research. Experimental results show that incorporating snRNA data into the scBIT model significantly boosts accuracy, improving binary classification by 3.39% and five-class classification by 26.59%. The codes were implemented in Python and have been released on GitHub (https://github.com/77YQ77/scBIT) and Zenodo (https://zenodo.org/records/11599030) with detailed instructions. |
2025-02-03 | A Privacy-Preserving Domain Adversarial Federated learning for multi-site brain functional connectivity analysis | Yipu Zhang, Likai Wang, Kuan-Jui Su, Aiying Zhang, Hao Zhu, Xiaowen Liu, Hui Shen, Vince D. Calhoun, Yuping Wang, Hongwen Deng | Link | Resting-state functional magnetic resonance imaging (rs-fMRI) and its derived functional connectivity networks (FCNs) have become critical for understanding neurological disorders. However, collaborative analyses and the generalizability of models still face significant challenges due to privacy regulations and the non-IID (non-independent and identically distributed) property of multiple data sources. To mitigate these difficulties, we propose Domain Adversarial Federated Learning (DAFed), a novel federated deep learning framework specifically designed for non-IID fMRI data analysis in multi-site settings. DAFed addresses these challenges through feature disentanglement, decomposing the latent feature space into domain-invariant and domain-specific components, to ensure robust global learning while preserving local data specificity. Furthermore, adversarial training facilitates effective knowledge transfer between labeled and unlabeled datasets, while a contrastive learning module enhances the global representation of domain-invariant features. We evaluated DAFed on the diagnosis of ASD and further validated its generalizability in the classification of AD, demonstrating its superior classification accuracy compared to state-of-the-art methods. Additionally, an enhanced Score-CAM module identifies key brain regions and functional connectivity significantly associated with ASD and MCI, respectively, uncovering shared neurobiological patterns across sites. These findings highlight the potential of DAFed to advance multi-site collaborative research in neuroimaging while protecting data confidentiality. |
Publish Date | Title | Authors | URL | Abstract |
---|---|---|---|---|
2025-02-11 | From Thought to Action: How a Hierarchy of Neural Dynamics Supports Language Production | Mingfang, Zhang, Jarod Lévy, Stéphane d'Ascoli, Jérémy Rapin, F. -Xavier Alario, Pierre Bourdillon, Svetlana Pinet, Jean-Rémi King | Link | Humans effortlessly communicate their thoughts through intricate sequences of motor actions. Yet, the neural processes that coordinate language production remain largely unknown, in part because speech artifacts limit the use of neuroimaging. To elucidate the unfolding of language production in the brain, we investigate with magnetoencephalography (MEG) and electroencephalography (EEG) the neurophysiological activity of 35 skilled typists, while they typed sentences on a keyboard. This approach confirms the hierarchical predictions of linguistic theories: the neural activity preceding the production of each word is marked by the sequential rise and fall of context-, word-, syllable-, and letter-level representations. Remarkably, each of these neural representations is maintained over long time periods within each level of the language hierarchy. This phenomenon results in a superposition of successive representations that is supported by a hierarchy of dynamic neural codes. Overall, these findings provide a precise computational breakdown of the neural dynamics that coordinate the production of language in the human brain. |
2025-02-07 | Estimated Roadway Segment Traffic Data by Vehicle Class for the United States: A Machine Learning Approach | Brittany Antonczak, Meg Fay, Aviral Chawla, Gregory Rowangould | Link | The Highway Performance Monitoring System, managed by the Federal Highway Administration, provides essential data on average annual daily traffic across U.S. roadways, but it has limited representation of medium- and heavy-duty vehicles on non-interstate roads. This gap limits research and policy analysis on the impacts of truck traffic, especially concerning air quality and public health. To address this, we use random forest regression to estimate medium- and heavy-duty vehicle traffic volumes in areas with sparse data. This results in a more comprehensive dataset, which enables the estimation of traffic density at the census block level as a proxy for traffic-related air pollution exposure. Our high-resolution spatial data products, rigorously validated, provide a more accurate representation of truck traffic and its environmental and health impacts. These datasets are valuable for transportation planning, public health research, and policy decisions aimed at mitigating the effects of truck traffic on vulnerable communities exposed to air pollution. |
2025-02-07 | Shifting Attention to You: Personalized Brain-Inspired AI Models | Stephen Chong Zhao, Yang Hu, Jason Lee, Andrew Bender, Trisha Mazumdar, Mark Wallace, David A. Tovar | Link | The integration of human and artificial intelligence represents a scientific opportunity to advance our understanding of information processing, as each system offers unique computational insights that can enhance and inform the other. The synthesis of human cognitive principles with artificial intelligence has the potential to produce more interpretable and functionally aligned computational models, while simultaneously providing a formal framework for investigating the neural mechanisms underlying perception, learning, and decision-making through systematic model comparisons and representational analyses. In this study, we introduce personalized brain-inspired modeling that integrates human behavioral embeddings and neural data to align with cognitive processes. We took a stepwise approach, fine-tuning the Contrastive Language-Image Pre-training (CLIP) model with large-scale behavioral decisions, group-level neural data, and finally, participant-level neural data within a broader framework that we have named CLIP-Human-Based Analysis (CLIP-HBA). We found that fine-tuning on behavioral data enhances its ability to predict human similarity judgments while indirectly aligning it with dynamic representations captured via MEG. To further gain mechanistic insights into the temporal evolution of cognitive processes, we introduced a model specifically fine-tuned on millisecond-level MEG neural dynamics (CLIP-HBA-MEG). This model resulted in enhanced temporal alignment with human neural processing while still showing improvement on behavioral alignment. Finally, we trained individualized models on participant-specific neural data, effectively capturing individualized neural dynamics and highlighting the potential for personalized AI systems. These personalized systems have far-reaching implications for the fields of medicine, cognitive research, human-computer interfaces, and AI development. |
2025-02-06 | Detecting Mild Traumatic Brain Injury with MEG Scan Data: One-vs-K-Sample Tests | Jian Zhang, Gary Green | Link | Magnetoencephalography (MEG) scanner has been shown to be more accurate than other medical devices in detecting mild traumatic brain injury (mTBI). However, MEG scan data in certain spectrum ranges can be skewed, multimodal and heterogeneous which can mislead the conventional case-control analysis that requires the data to be homogeneous and normally distributed within the control group. To meet this challenge, we propose a flexible one-vs-K-sample testing procedure for detecting brain injury for a single-case versus heterogeneous controls. The new procedure begins with source magnitude imaging using MEG scan data in frequency domain, followed by region-wise contrast tests for abnormality between the case and controls. The critical values for these tests are automatically determined by cross-validation. We adjust the testing results for heterogeneity effects by similarity analysis. An asymptotic theory is established for the proposed test statistic. By simulated and real data analyses in the context of neurotrauma, we show that the proposed test outperforms commonly used nonparametric methods in terms of overall accuracy and ability in accommodating data non-normality and subject-heterogeneity. |
2025-01-31 | Constitutional Classifiers: Defending against Universal Jailbreaks across Thousands of Hours of Red Teaming | Mrinank Sharma, Meg Tong, Jesse Mu, Jerry Wei, Jorrit Kruthoff, Scott Goodfriend, Euan Ong, Alwin Peng, Raj Agarwal, Cem Anil, Amanda Askell, Nathan Bailey, Joe Benton, Emma Bluemke, Samuel R. Bowman, Eric Christiansen, Hoagy Cunningham, Andy Dau, Anjali Gopal, Rob Gilson, Logan Graham, Logan Howard, Nimit Kalra, Taesung Lee, Kevin Lin, Peter Lofgren, Francesco Mosconi, Clare O'Hara, Catherine Olsson, Linda Petrini, Samir Rajani, Nikhil Saxena, Alex Silverstein, Tanya Singh, Theodore Sumers, Leonard Tang, Kevin K. Troy, Constantin Weisser, Ruiqi Zhong, Giulio Zhou, Jan Leike, Jared Kaplan, Ethan Perez | Link | Large language models (LLMs) are vulnerable to universal jailbreaks-prompting strategies that systematically bypass model safeguards and enable users to carry out harmful processes that require many model interactions, like manufacturing illegal substances at scale. To defend against these attacks, we introduce Constitutional Classifiers: safeguards trained on synthetic data, generated by prompting LLMs with natural language rules (i.e., a constitution) specifying permitted and restricted content. In over 3,000 estimated hours of red teaming, no red teamer found a universal jailbreak that could extract information from an early classifier-guarded LLM at a similar level of detail to an unguarded model across most target queries. On automated evaluations, enhanced classifiers demonstrated robust defense against held-out domain-specific jailbreaks. These classifiers also maintain deployment viability, with an absolute 0.38% increase in production-traffic refusals and a 23.7% inference overhead. Our work demonstrates that defending against universal jailbreaks while maintaining practical deployment viability is tractable. |
2025-01-28 | "Ownership, Not Just Happy Talk": Co-Designing a Participatory Large Language Model for Journalism | Emily Tseng, Meg Young, Marianne Aubin Le Quéré, Aimee Rinehart, Harini Suresh | Link | Journalism has emerged as an essential domain for understanding the uses, limitations, and impacts of large language models (LLMs) in the workplace. News organizations face divergent financial incentives: LLMs already permeate newswork processes within financially constrained organizations, even as ongoing legal challenges assert that AI companies violate their copyright. At stake are key questions about what LLMs are created to do, and by whom: How might a journalist-led LLM work, and what can participatory design illuminate about the present-day challenges about adapting ``one-size-fits-all'' foundation models to a given context of use? In this paper, we undertake a co-design exploration to understand how a participatory approach to LLMs might address opportunities and challenges around AI in journalism. Our 20 interviews with reporters, data journalists, editors, labor organizers, product leads, and executives highlight macro, meso, and micro tensions that designing for this opportunity space must address. From these desiderata, we describe the result of our co-design work: organizational structures and functionality for a journalist-controlled LLM. In closing, we discuss the limitations of commercial foundation models for workplace use, and the methodological implications of applying participatory methods to LLM co-design. |
2025-01-26 | The Advanced Muon Facility: a proposed multi-purpose muon facility at Fermilab | Sophie Middleton | Link | Charged lepton flavor violation (CLFV) is expected in a diverse set of new physics scenarios. The current generation of experiments probe CLFV in the muon sector in three complementary channels: |
2025-01-28 | Scaling laws for decoding images from brain activity | Hubert Banville, Yohann Benchetrit, Stéphane d'Ascoli, Jérémy Rapin, Jean-Rémi King | Link | Generative AI has recently propelled the decoding of images from brain activity. How do these approaches scale with the amount and type of neural recordings? Here, we systematically compare image decoding from four types of non-invasive devices: electroencephalography (EEG), magnetoencephalography (MEG), high-field functional Magnetic Resonance Imaging (3T fMRI) and ultra-high field (7T) fMRI. For this, we evaluate decoding models on the largest benchmark to date, encompassing 8 public datasets, 84 volunteers, 498 hours of brain recording and 2.3 million brain responses to natural images. Unlike previous work, we focus on single-trial decoding performance to simulate real-time settings. This systematic comparison reveals three main findings. First, the most precise neuroimaging devices tend to yield the best decoding performances, when the size of the training sets are similar. However, the gain enabled by deep learning - in comparison to linear models - is obtained with the noisiest devices. Second, we do not observe any plateau of decoding performance as the amount of training data increases. Rather, decoding performance scales log-linearly with the amount of brain recording. Third, this scaling law primarily depends on the amount of data per subject. However, little decoding gain is observed by increasing the number of subjects. Overall, these findings delineate the path most suitable to scale the decoding of images from non-invasive brain recordings. |
2025-01-21 | Probing Type II Seesaw Leptogenesis Through Lepton Flavor Violation | Chengcheng Han, Yijun Han, Sihui Huang, Zhanhong Lei | Link | Lepton flavor violation (LFV) offers a powerful probe of physics beyond the Standard Model, particularly in models addressing neutrino masses and the baryon asymmetry of the universe. In this study, we investigate LFV processes within the framework of type II seesaw leptogenesis, where the Standard Model is extended by an |
2025-01-20 | Artificial Neural Networks for Magnetoencephalography: A review of an emerging field | Arthur Dehgan, Hamza Abdelhedi, Vanessa Hadid, Irina Rish, Karim Jerbi | Link | Magnetoencephalography (MEG) is a cutting-edge neuroimaging technique that measures the intricate brain dynamics underlying cognitive processes with an unparalleled combination of high temporal and spatial precision. MEG data analytics has always relied on advanced signal processing and mathematical and statistical tools for various tasks ranging from data cleaning to probing the signals' rich dynamics and estimating the neural sources underlying the surface-level recordings. Like in most domains, the surge in Artificial Intelligence (AI) has led to the increased use of Machine Learning (ML) methods for MEG data classification. More recently, an emerging trend in this field is using Artificial Neural Networks (ANNs) to address many MEG-related tasks. This review provides a comprehensive overview of how ANNs are being used with MEG data from three vantage points: First, we review work that employs ANNs for MEG signal classification, i.e., for brain decoding. Second, we report on work that has used ANNs as putative models of information processing in the human brain. Finally, we examine studies that use ANNs as techniques to tackle methodological questions in MEG, including artifact correction and source estimation. Furthermore, we assess the current strengths and limitations of using ANNs with MEG and discuss future challenges and opportunities in this field. Finally, by establishing a detailed portrait of the field and providing practical recommendations for the future, this review seeks to provide a helpful reference for both seasoned MEG researchers and newcomers to the field who are interested in using ANNs to enhance the exploration of the complex dynamics of the human brain with MEG. |
Publish Date | Title | Authors | URL | Abstract |
---|---|---|---|---|
2025-01-04 | Asynchronous Hebbian/anti-Hebbian networks | Henrique Reis Aguiar, Matthias H. Hennig | Link | Lateral inhibition models coupled with Hebbian plasticity have been shown to learn factorised causal representations of input stimuli, for instance, oriented edges are learned from natural images. Currently, these models require the recurrent dynamics to settle into a stable state before weight changes can be applied, which is not only biologically implausible, but also impractical for real-time learning systems. Here, we propose a new Hebbian learning rule which is implemented using plausible biological mechanisms that have been observed experimentally. We find that this rule allows for efficient, time-continuous learning of factorised representations, very similar to the classic noncontinuous Hebbian/anti-Hebbian learning. Furthermore, we show that this rule naturally prevents catastrophic forgetting when stimuli from different distributions are shown sequentially. |
2024-11-27 | NeuroAI for AI Safety | Patrick Mineault, Niccolò Zanichelli, Joanne Zichen Peng, Anton Arkhipov, Eli Bingham, Julian Jara-Ettinger, Emily Mackevicius, Adam Marblestone, Marcelo Mattar, Andrew Payne, Sophia Sanborn, Karen Schroeder, Zenna Tavares, Andreas Tolias | Link | As AI systems become increasingly powerful, the need for safe AI has become more pressing. Humans are an attractive model for AI safety: as the only known agents capable of general intelligence, they perform robustly even under conditions that deviate significantly from prior experiences, explore the world safely, understand pragmatics, and can cooperate to meet their intrinsic goals. Intelligence, when coupled with cooperation and safety mechanisms, can drive sustained progress and well-being. These properties are a function of the architecture of the brain and the learning algorithms it implements. Neuroscience may thus hold important keys to technical AI safety that are currently underexplored and underutilized. In this roadmap, we highlight and critically evaluate several paths toward AI safety inspired by neuroscience: emulating the brain's representations, information processing, and architecture; building robust sensory and motor systems from imitating brain data and bodies; fine-tuning AI systems on brain data; advancing interpretability using neuroscience methods; and scaling up cognitively-inspired architectures. We make several concrete recommendations for how neuroscience can positively impact AI safety. |
2024-11-21 | Evaluating Representational Similarity Measures from the Lens of Functional Correspondence | Yiqing Bo, Ansh Soni, Sudhanshu Srivastava, Meenakshi Khosla | Link | Neuroscience and artificial intelligence (AI) both face the challenge of interpreting high-dimensional neural data, where the comparative analysis of such data is crucial for revealing shared mechanisms and differences between these complex systems. Despite the widespread use of representational comparisons and the abundance classes of comparison methods, a critical question remains: which metrics are most suitable for these comparisons? While some studies evaluate metrics based on their ability to differentiate models of different origins or constructions (e.g., various architectures), another approach is to assess how well they distinguish models that exhibit distinct behaviors. To investigate this, we examine the degree of alignment between various representational similarity measures and behavioral outcomes, employing group statistics and a comprehensive suite of behavioral metrics for comparison. In our evaluation of eight commonly used representational similarity metrics in the visual domain -- spanning alignment-based, Canonical Correlation Analysis (CCA)-based, inner product kernel-based, and nearest-neighbor methods -- we found that metrics like linear Centered Kernel Alignment (CKA) and Procrustes distance, which emphasize the overall geometric structure or shape of representations, excelled in differentiating trained from untrained models and aligning with behavioral measures, whereas metrics such as linear predictivity, commonly used in neuroscience, demonstrated only moderate alignment with behavior. These insights are crucial for selecting metrics that emphasize behaviorally meaningful comparisons in NeuroAI research. |
2024-10-25 | A prescriptive theory for brain-like inference | Hadi Vafaii, Dekel Galor, Jacob L. Yates | Link | The Evidence Lower Bound (ELBO) is a widely used objective for training deep generative models, such as Variational Autoencoders (VAEs). In the neuroscience literature, an identical objective is known as the variational free energy, hinting at a potential unified framework for brain function and machine learning. Despite its utility in interpreting generative models, including diffusion models, ELBO maximization is often seen as too broad to offer prescriptive guidance for specific architectures in neuroscience or machine learning. In this work, we show that maximizing ELBO under Poisson assumptions for general sequence data leads to a spiking neural network that performs Bayesian posterior inference through its membrane potential dynamics. The resulting model, the iterative Poisson VAE (iP-VAE), has a closer connection to biological neurons than previous brain-inspired predictive coding models based on Gaussian assumptions. Compared to amortized and iterative VAEs, iP-VAElearns sparser representations and exhibits superior generalization to out-of-distribution samples. These findings suggest that optimizing ELBO, combined with Poisson assumptions, provides a solid foundation for developing prescriptive theories in NeuroAI. |
2024-09-09 | Evidence from fMRI Supports a Two-Phase Abstraction Process in Language Models | Emily Cheng, Richard J. Antonello | Link | Research has repeatedly demonstrated that intermediate hidden states extracted from large language models are able to predict measured brain response to natural language stimuli. Yet, very little is known about the representation properties that enable this high prediction performance. Why is it the intermediate layers, and not the output layers, that are most capable for this unique and highly general transfer task? In this work, we show that evidence from language encoding models in fMRI supports the existence of a two-phase abstraction process within LLMs. We use manifold learning methods to show that this abstraction process naturally arises over the course of training a language model and that the first "composition" phase of this abstraction process is compressed into fewer layers as training continues. Finally, we demonstrate a strong correspondence between layerwise encoding performance and the intrinsic dimensionality of representations from LLMs. We give initial evidence that this correspondence primarily derives from the inherent compositionality of LLMs and not their next-word prediction properties. |
2024-07-22 | Predictive Coding Networks and Inference Learning: Tutorial and Survey | Björn van Zwol, Ro Jefferson, Egon L. van den Broek | Link | Recent years have witnessed a growing call for renewed emphasis on neuroscience-inspired approaches in artificial intelligence research, under the banner of NeuroAI. A prime example of this is predictive coding networks (PCNs), based on the neuroscientific framework of predictive coding. This framework views the brain as a hierarchical Bayesian inference model that minimizes prediction errors through feedback connections. Unlike traditional neural networks trained with backpropagation (BP), PCNs utilize inference learning (IL), a more biologically plausible algorithm that explains patterns of neural activity that BP cannot. Historically, IL has been more computationally intensive, but recent advancements have demonstrated that it can achieve higher efficiency than BP with sufficient parallelization. Furthermore, PCNs can be mathematically considered a superset of traditional feedforward neural networks (FNNs), significantly extending the range of trainable architectures. As inherently probabilistic (graphical) latent variable models, PCNs provide a versatile framework for both supervised learning and unsupervised (generative) modeling that goes beyond traditional artificial neural networks. This work provides a comprehensive review and detailed formal specification of PCNs, particularly situating them within the context of modern ML methods. Additionally, we introduce a Python library (PRECO) for practical implementation. This positions PC as a promising framework for future ML innovations. |
2023-10-29 | Beyond Geometry: Comparing the Temporal Structure of Computation in Neural Circuits with Dynamical Similarity Analysis | Mitchell Ostrow, Adam Eisen, Leo Kozachkov, Ila Fiete | Link | How can we tell whether two neural networks utilize the same internal processes for a particular computation? This question is pertinent for multiple subfields of neuroscience and machine learning, including neuroAI, mechanistic interpretability, and brain-machine interfaces. Standard approaches for comparing neural networks focus on the spatial geometry of latent states. Yet in recurrent networks, computations are implemented at the level of dynamics, and two networks performing the same computation with equivalent dynamics need not exhibit the same geometry. To bridge this gap, we introduce a novel similarity metric that compares two systems at the level of their dynamics, called Dynamical Similarity Analysis (DSA). Our method incorporates two components: Using recent advances in data-driven dynamical systems theory, we learn a high-dimensional linear system that accurately captures core features of the original nonlinear dynamics. Next, we compare different systems passed through this embedding using a novel extension of Procrustes Analysis that accounts for how vector fields change under orthogonal transformation. In four case studies, we demonstrate that our method disentangles conjugate and non-conjugate recurrent neural networks (RNNs), while geometric methods fall short. We additionally show that our method can distinguish learning rules in an unsupervised manner. Our method opens the door to comparative analyses of the essential temporal structure of computation in neural circuits. |
2023-05-25 | Explaining V1 Properties with a Biologically Constrained Deep Learning Architecture | Galen Pogoncheff, Jacob Granley, Michael Beyeler | Link | Convolutional neural networks (CNNs) have recently emerged as promising models of the ventral visual stream, despite their lack of biological specificity. While current state-of-the-art models of the primary visual cortex (V1) have surfaced from training with adversarial examples and extensively augmented data, these models are still unable to explain key neural properties observed in V1 that arise from biological circuitry. To address this gap, we systematically incorporated neuroscience-derived architectural components into CNNs to identify a set of mechanisms and architectures that comprehensively explain neural activity in V1. We show drastic improvements in model-V1 alignment driven by the integration of architectural components that simulate center-surround antagonism, local receptive fields, tuned normalization, and cortical magnification. Upon enhancing task-driven CNNs with a collection of these specialized components, we uncover models with latent representations that yield state-of-the-art explanation of V1 neural activity and tuning properties. Our results highlight an important advancement in the field of NeuroAI, as we systematically establish a set of architectural components that contribute to unprecedented explanation of V1. The neuroscience insights that could be gleaned from increasingly accurate in-silico models of the brain have the potential to greatly advance the fields of both neuroscience and artificial intelligence. |
2024-11-09 | A Deep Probabilistic Spatiotemporal Framework for Dynamic Graph Representation Learning with Application to Brain Disorder Identification | Sin-Yee Yap, Junn Yong Loo, Chee-Ming Ting, Fuad Noman, Raphael C. -W. Phan, Adeel Razi, David L. Dowe | Link | Recent applications of pattern recognition techniques on brain connectome classification using functional connectivity (FC) are shifting towards acknowledging the non-Euclidean topology and dynamic aspects of brain connectivity across time. In this paper, a deep spatiotemporal variational Bayes (DSVB) framework is proposed to learn time-varying topological structures in dynamic FC networks for identifying autism spectrum disorder (ASD) in human participants. The framework incorporates a spatial-aware recurrent neural network with an attention-based message passing scheme to capture rich spatiotemporal patterns across dynamic FC networks. To overcome model overfitting on limited training datasets, an adversarial training strategy is introduced to learn graph embedding models that generalize well to unseen brain networks. Evaluation on the ABIDE resting-state functional magnetic resonance imaging dataset shows that our proposed framework substantially outperforms state-of-the-art methods in identifying patients with ASD. Dynamic FC analyses with DSVB-learned embeddings reveal apparent group differences between ASD and healthy controls in brain network connectivity patterns and switching dynamics of brain states. The code is available at https://github.com/Monash-NeuroAI/Deep-Spatiotemporal-Variational-Bayes. |
2023-03-11 | Towards NeuroAI: Introducing Neuronal Diversity into Artificial Neural Networks | Feng-Lei Fan, Yingxin Li, Hanchuan Peng, Tieyong Zeng, Fei Wang | Link | Throughout history, the development of artificial intelligence, particularly artificial neural networks, has been open to and constantly inspired by the increasingly deepened understanding of the brain, such as the inspiration of neocognitron, which is the pioneering work of convolutional neural networks. Per the motives of the emerging field: NeuroAI, a great amount of neuroscience knowledge can help catalyze the next generation of AI by endowing a network with more powerful capabilities. As we know, the human brain has numerous morphologically and functionally different neurons, while artificial neural networks are almost exclusively built on a single neuron type. In the human brain, neuronal diversity is an enabling factor for all kinds of biological intelligent behaviors. Since an artificial network is a miniature of the human brain, introducing neuronal diversity should be valuable in terms of addressing those essential problems of artificial networks such as efficiency, interpretability, and memory. In this Primer, we first discuss the preliminaries of biological neuronal diversity and the characteristics of information transmission and processing in a biological neuron. Then, we review studies of designing new neurons for artificial networks. Next, we discuss what gains can neuronal diversity bring into artificial networks and exemplary applications in several important fields. Lastly, we discuss the challenges and future directions of neuronal diversity to explore the potential of NeuroAI. |
Publish Date | Title | Authors | URL | Abstract |
---|---|---|---|---|
2025-02-13 | Wireless and passive pressure detection using magneto-mechanical resonances in process engineering | Timo Merbach, Felix Kexel, Jonas Faltinath, Martin Möddel, Michael Schlüter, Tobias Knopp, Fabian Mohn | Link | A custom-developed magneto-mechanical resonator (MMR) for wireless pressure measurement is investigated for potential applications in process engineering. The MMR sensor utilises changes in the resonance frequency caused by pressure on a flexible 3D printed membrane. The thickness of the printed membrane plays a crucial role in determining the performance and sensitivity of MMRs, and can be tailored to meet the requirements of specific applications. The study includes static and dynamic measurements to determine the pressure sensitivity and temporal resolution of the sensor. The results show a minimum sensitivity of |
2025-02-13 | Standardisation of Convex Ultrasound Data Through Geometric Analysis and Augmentation | Alistair Weld, Giovanni Faoro, Luke Dixon, Sophie Camp, Arianna Menciassi, Stamatia Giannarou | Link | The application of ultrasound in healthcare has seen increased diversity and importance. Unlike other medical imaging modalities, ultrasound research and development has historically lagged, particularly in the case of applications with data-driven algorithms. A significant issue with ultrasound is the extreme variability of the images, due to the number of different machines available and the possible combination of parameter settings. One outcome of this is the lack of standardised and benchmarking ultrasound datasets. The method proposed in this article is an approach to alleviating this issue of disorganisation. For this purpose, the issue of ultrasound data sparsity is examined and a novel perspective, approach, and solution is proposed; involving the extraction of the underlying ultrasound plane within the image and representing it using annulus sector geometry. An application of this methodology is proposed, which is the extraction of scan lines and the linearisation of convex planes. Validation of the robustness of the proposed method is performed on both private and public data. The impact of deformation and the invertibility of augmentation using the estimated annulus sector parameters is also studied. Keywords: Ultrasound, Annulus Sector, Augmentation, Linearisation. |
2025-02-13 | A Physics-Informed Deep Learning Model for MRI Brain Motion Correction | Mojtaba Safari, Shansong Wang, Zach Eidex, Richard Qiu, Chih-Wei Chang, David S. Yu, Xiaofeng Yang | Link | Background: MRI is crucial for brain imaging but is highly susceptible to motion artifacts due to long acquisition times. This study introduces PI-MoCoNet, a physics-informed motion correction network that integrates spatial and k-space information to remove motion artifacts without explicit motion parameter estimation, enhancing image fidelity and diagnostic reliability. Materials and Methods: PI-MoCoNet consists of a motion detection network (U-net with spatial averaging) to identify corrupted k-space lines and a motion correction network (U-net with Swin Transformer blocks) to reconstruct motion-free images. The correction is guided by three loss functions: reconstruction (L1), perceptual (LPIPS), and data consistency (Ldc). Motion artifacts were simulated via rigid phase encoding perturbations and evaluated on IXI and MR-ART datasets against Pix2Pix, CycleGAN, and U-net using PSNR, SSIM, and NMSE. Results: PI-MoCoNet significantly improved image quality. On IXI, for minor artifacts, PSNR increased from 34.15 dB to 45.95 dB, SSIM from 0.87 to 1.00, and NMSE reduced from 0.55% to 0.04%. For moderate artifacts, PSNR improved from 30.23 dB to 42.16 dB, SSIM from 0.80 to 0.99, and NMSE from 1.32% to 0.09%. For heavy artifacts, PSNR rose from 27.99 dB to 36.01 dB, SSIM from 0.75 to 0.97, and NMSE decreased from 2.21% to 0.36%. On MR-ART, PI-MoCoNet achieved PSNR gains of ~10 dB and SSIM improvements of up to 0.20, with NMSE reductions of ~6%. Ablation studies confirmed the importance of data consistency and perceptual losses, yielding a 1 dB PSNR gain and 0.17% NMSE reduction. Conclusions: PI-MoCoNet effectively mitigates motion artifacts in brain MRI, outperforming existing methods. Its ability to integrate spatial and k-space information makes it a promising tool for clinical use in motion-prone settings. Code: https://github.com/mosaf/PI-MoCoNet.git. |
2025-02-13 | The Joint Entity-Relation Extraction Model Based on Span and Interactive Fusion Representation for Chinese Medical Texts with Complex Semantics | Danni Feng, Runzhi Li, Jing Wang, Siyu Yan, Lihong Ma, Yunli Xing | Link | Joint entity-relation extraction is a critical task in transforming unstructured or semi-structured text into triplets, facilitating the construction of large-scale knowledge graphs, and supporting various downstream applications. Despite its importance, research on Chinese text, particularly with complex semantics in specialized domains like medicine, remains limited. To address this gap, we introduce the CH-DDI, a Chinese drug-drug interactions dataset designed to capture the intricacies of medical text. Leveraging the strengths of attention mechanisms in capturing long-range dependencies, we propose the SEA module, which enhances the extraction of complex contextual semantic information, thereby improving entity recognition and relation extraction. Additionally, to address the inefficiencies of existing methods in facilitating information exchange between entity recognition and relation extraction, we present an interactive fusion representation module. This module employs Cross Attention for bidirectional information exchange between the tasks and further refines feature extraction through BiLSTM. Experimental results on both our CH-DDI dataset and public CoNLL04 dataset demonstrate that our model exhibits strong generalization capabilities. On the CH-DDI dataset, our model achieves an F1-score of 96.73% for entity recognition and 78.43% for relation extraction. On the CoNLL04 dataset, it attains an entity recognition precision of 89.54% and a relation extraction accuracy of 71.64%. |
2025-02-13 | From large language models to multimodal AI: A scoping review on the potential of generative AI in medicine | Lukas Buess, Matthias Keicher, Nassir Navab, Andreas Maier, Soroosh Tayebi Arasteh | Link | Generative artificial intelligence (AI) models, such as diffusion models and OpenAI's ChatGPT, are transforming medicine by enhancing diagnostic accuracy and automating clinical workflows. The field has advanced rapidly, evolving from text-only large language models for tasks such as clinical documentation and decision support to multimodal AI systems capable of integrating diverse data modalities, including imaging, text, and structured data, within a single model. The diverse landscape of these technologies, along with rising interest, highlights the need for a comprehensive review of their applications and potential. This scoping review explores the evolution of multimodal AI, highlighting its methods, applications, datasets, and evaluation in clinical settings. Adhering to PRISMA-ScR guidelines, we systematically queried PubMed, IEEE Xplore, and Web of Science, prioritizing recent studies published up to the end of 2024. After rigorous screening, 144 papers were included, revealing key trends and challenges in this dynamic field. Our findings underscore a shift from unimodal to multimodal approaches, driving innovations in diagnostic support, medical report generation, drug discovery, and conversational AI. However, critical challenges remain, including the integration of heterogeneous data types, improving model interpretability, addressing ethical concerns, and validating AI systems in real-world clinical settings. This review summarizes the current state of the art, identifies critical gaps, and provides insights to guide the development of scalable, trustworthy, and clinically impactful multimodal AI solutions in healthcare. |
2025-02-13 | Data2Concept2Text: An Explainable Multilingual Framework for Data Analysis Narration | Flavio Bertini, Alessandro Dal Palù, Federica Zaglio, Francesco Fabiano, Andrea Formisano | Link | This paper presents a complete explainable system that interprets a set of data, abstracts the underlying features and describes them in a natural language of choice. The system relies on two crucial stages: (i) identifying emerging properties from data and transforming them into abstract concepts, and (ii) converting these concepts into natural language. Despite the impressive natural language generation capabilities demonstrated by Large Language Models, their statistical nature and the intricacy of their internal mechanism still force us to employ these techniques as black boxes, forgoing trustworthiness. Developing an explainable pipeline for data interpretation would allow facilitating its use in safety-critical environments like processing medical information and allowing non-experts and visually impaired people to access narrated information. To this end, we believe that the fields of knowledge representation and automated reasoning research could present a valid alternative. Expanding on prior research that tackled the first stage (i), we focus on the second stage, named Concept2Text. Being explainable, data translation is easily modeled through logic-based rules, once again emphasizing the role of declarative programming in achieving AI explainability. This paper explores a Prolog/CLP-based rewriting system to interpret concepts-articulated in terms of classes and relations, plus common knowledge-derived from a generic ontology, generating natural language text. Its main features include hierarchical tree rewritings, modular multilingual generation, support for equivalent variants across semantic, grammar, and lexical levels, and a transparent rule-based system. We outline the architecture and demonstrate its flexibility through some examples capable of generating numerous diverse and equivalent rewritings based on the input concept. |
2025-02-13 | Improving TCM Question Answering through Tree-Organized Self-Reflective Retrieval with LLMs | Chang Liu, Ying Chang, Jianmin Li, Yiqian Qu, Yu Li, Lingyong Cao, Shuyuan Lin | Link | Objectives: Large language models (LLMs) can harness medical knowledge for intelligent question answering (Q&A), promising support for auxiliary diagnosis and medical talent cultivation. However, there is a deficiency of highly efficient retrieval-augmented generation (RAG) frameworks within the domain of Traditional Chinese Medicine (TCM). Our purpose is to observe the effect of the Tree-Organized Self-Reflective Retrieval (TOSRR) framework on LLMs in TCM Q&A tasks. Materials and Methods: We introduce the novel approach of knowledge organization, constructing a tree structure knowledge base with hierarchy. At inference time, our self-reflection framework retrieves from this knowledge base, integrating information across chapters. Questions from the TCM Medical Licensing Examination (MLE) and the college Classics Course Exam (CCE) were randomly selected as benchmark datasets. Results: By coupling with GPT-4, the framework can improve the best performance on the TCM MLE benchmark by 19.85% in absolute accuracy, and improve recall accuracy from 27% to 38% on CCE datasets. In manual evaluation, the framework improves a total of 18.52 points across dimensions of safety, consistency, explainability, compliance, and coherence. Conclusion: The TOSRR framework can effectively improve LLM's capability in Q&A tasks of TCM. |
2025-02-13 | Evaluating the Effects of Situated and Embedded Visualisation in Augmented Reality Guidance for Isolated Medical Assistance | Frederick George Vickery, Sébastien Kubicki, Charlotte Hoareau, Lucas Brand, Aurelien Duval, Seamus Thierry, Ronan Querrec | Link | One huge advantage of Augmented Reality (AR) is its numerous possibilities of displaying information in the physical world, especially when applying Situated Analytics (SitA). AR devices and their respective interaction techniques allow for supplementary guidance to assist an operator carrying out complex procedures such as medical diagnosis and surgery, for instance. Their usage promotes user autonomy by presenting relevant information when the operator may not necessarily possess expert knowledge of every procedure and may also not have access to external help such as in a remote or isolated situation (e.g., International Space Station, middle of an ocean, desert).In this paper, we propose a comparison of two different forms of AR visualisation: An embedded visualisation and a situated projected visualisation, with the aim to assist operators with the most appropriate visualisation format when carrying out procedures (medical in our case). To evaluate these forms of visualisation, we carried out an experiment involving 23 participants possessing latent/novice medical knowledge. These participant profiles were representative of operators who are medically trained yet do not apply their knowledge every day (e.g., an astronaut in orbit or a sailor out at sea). We discuss our findings which include the advantages of embedded visualised information in terms of precision compared to situated projected information with the accompanying limitations in addition to future improvements to our proposition. We conclude with the prospects of our work, notably the continuation and possibility of evaluating our proposition in a less controlled and real context in collaboration with our national space agency. |
2025-02-13 | Hierarchical Vision Transformer with Prototypes for Interpretable Medical Image Classification | Luisa Gallée, Catharina Silvia Lisson, Meinrad Beer, Michael Götz | Link | Explainability is a highly demanded requirement for applications in high-risk areas such as medicine. Vision Transformers have mainly been limited to attention extraction to provide insight into the model's reasoning. Our approach combines the high performance of Vision Transformers with the introduction of new explainability capabilities. We present HierViT, a Vision Transformer that is inherently interpretable and adapts its reasoning to that of humans. A hierarchical structure is used to process domain-specific features for prediction. It is interpretable by design, as it derives the target output with human-defined features that are visualized by exemplary images (prototypes). By incorporating domain knowledge about these decisive features, the reasoning is semantically similar to human reasoning and therefore intuitive. Moreover, attention heatmaps visualize the crucial regions for identifying each feature, thereby providing HierViT with a versatile tool for validating predictions. Evaluated on two medical benchmark datasets, LIDC-IDRI for lung nodule assessment and derm7pt for skin lesion classification, HierViT achieves superior and comparable prediction accuracy, respectively, while offering explanations that align with human reasoning. |
2025-02-13 | Latents of latents to delineate pixels: hybrid Matryoshka autoencoder-to-U-Net pairing for segmenting large medical images in GPU-poor and low-data regimes | Tahir Syed, Ariba Khan, Sawera Hanif | Link | Medical images are often high-resolution and lose important detail if downsampled, making pixel-level methods such as semantic segmentation much less efficient if performed on a low-dimensional image. We propose a low-rank Matryoshka projection and a hybrid segmenting architecture that preserves important information while retaining sufficient pixel geometry for pixel-level tasks. We design the Matryoshka Autoencoder (MatAE-U-Net) which combines the hierarchical encoding of the Matryoshka Autoencoder with the spatial reconstruction capabilities of a U-Net decoder, leveraging multi-scale feature extraction and skip connections to enhance accuracy and generalisation. We apply it to the problem of segmenting the left ventricle (LV) in echocardiographic images using the Stanford EchoNet-D dataset, including 1,000 standardised video-mask pairs of cardiac ultrasound videos resized to 112x112 pixels. The MatAE-UNet model achieves a Mean IoU of 77.68\%, Mean Pixel Accuracy of 97.46\%, and Dice Coefficient of 86.91\%, outperforming the baseline U-Net, which attains a Mean IoU of 74.70\%, Mean Pixel Accuracy of 97.31\%, and Dice Coefficient of 85.20\%. The results highlight the potential of using the U-Net in the recursive Matroshka latent space for imaging problems with low-contrast such as echocardiographic analysis. |