-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprism_structures.R
163 lines (120 loc) · 5.44 KB
/
prism_structures.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
library(tidyverse)
library(rcdk)
library(parallel)
#functions
getStructures = function(json_file = x) {
prismdf1 = jsonlite::fromJSON(json_file,flatten = T,simplifyDataFrame =T)$prism_results$clusters
##get the main products #########
#list of dfs, each df corresponds to cluster
main_products = prismdf1$predicted_molecule_masses
if (length(main_products) != 0 & !is.null(unlist(main_products)) ) {
# append the rownames to include cluster and sample idx
for (idx in seq(1, length(main_products), 1)) {
if (nrow(main_products[[idx]]) != 0) {
#smiles is a list
main_products[[idx]] = tibble(smiles = unlist(main_products[[idx]]$smiles))
#adding cluster and smiles number
main_products[[idx]] = mutate(
main_products[[idx]],
BGC_no = as.character(idx),
smile_no = rownames(main_products[[idx]]),
name = sprintf("c%s_s%s", BGC_no, smile_no)
)
}
}
#single df per sample including all clusters
main_products = bind_rows(main_products)
}
## get the intermediate products #####
intermediate_smiles = lapply(prismdf1$biosynthetic_pathways,function(biosynpathway) biosynpathway$pathway %>% lapply(.,function(pathway) pathway$intermediate_smiles))
if (length(intermediate_smiles)!= 0 & !is.null(unlist(intermediate_smiles))) {
names(intermediate_smiles) = as.character(1:length(intermediate_smiles))
intermediate_smiles = lapply(intermediate_smiles, function(ismiles) {
#there are empty lists with no structures so check first
if (length(ismiles) > 0) {
if(!is.null(ismiles[[1]])) {
#add names to list for bind_rows
names(ismiles) = as.character(1:length(ismiles))
#bind_rows
ismiles = bind_rows(ismiles)
ismiles$intermediate_no = 1:nrow(ismiles)
ismiles = pivot_longer(
data = ismiles,
cols = where(is.character),
names_to = "smile_no",
values_to = "smiles"
)
}
}
return(ismiles)
}) %>%
bind_rows(., .id = "BGC_no")
intermediate_smiles = mutate(intermediate_smiles, name = sprintf("c%s_i%s_s%s", BGC_no, intermediate_no, smile_no))
## combine main and intermediates
all_structures = bind_rows(main_products,intermediate_smiles)
} else(all_structures = main_products)
### refine ####
if((length(main_products) != 0 & !is.null(unlist(main_products))) | (length(intermediate_smiles) != 0) & !is.null(unlist(intermediate_smiles))){
#use rcdk to disconnect molecules, take larger of two and then calc exact mass of the disconnected mols
allSmiles = parse.smiles(all_structures$smiles)
allSmiles = lapply(allSmiles,get.largest.component)
all_structures$mass = as.numeric(sapply(allSmiles,get.exact.mass))
all_structures$smiles = as.character(sapply(allSmiles,get.smiles))
all_structures$n_aminoacids = 0
return(all_structures)} else{return(NULL)}
}
prism_jsons = Sys.glob("data/prism/*.json")
cl <- makeCluster(30)
clusterEvalQ(cl, library("tidyverse"))
clusterEvalQ(cl, library("rcdk"))
clusterExport(cl, "prism_jsons")
clusterExport(cl, "getStructures")
structures = parLapply(cl,prism_jsons,function(x) {
print(x)
getStructures(json_file = x)})
names(structures) = prism_jsons
structures = bind_rows(structures,.id="prism_path")
write_tsv(structures,"data/prism/prism_structures.tsv")
structures$inchikey = sapply(structures$smiles,get.inchi.key)
# split db
structures = read_tsv("data/prism/prism_structures.tsv")
structures = structures %>% filter(mass > 200)
structures = structures %>% mutate(strain = str_extract(prism_path,pattern = "\\w+-\\d+"),
name = paste(strain,name,sep = "_"),
cmds = sprintf("obabel --gen3D -:\"%s\" -omol -x3 > data/QTOF/databases/%s/mols/%s.mol",
smiles,strain,name),
molfile = paste0("mols/",name,".mol"),
metadata = "NA")
lapply(unique(structures$strain),function(given_strain){
dir.create(sprintf("data/QTOF/databases/%s/mols",given_strain),recursive=T)
strain_structures=structures %>% filter(strain==given_strain)
write.table(strain_structures[c('molfile','name','mass',
'n_aminoacids','metadata')] ,
file = sprintf("data/QTOF/databases/%s/library.info",given_strain),
col.names = F,
row.names = F,
quote = F)
write.table(strain_structures['smiles'],
file = sprintf("data/QTOF/databases/%s/library.smiles",given_strain),
col.names = F,
row.names = F,
quote = F)
})
write.table(structures$cmds,
file = "src/swarms/mol_files_obabel.swarm",
quote = F,row.names = F,col.names = F)
# construct a finger print
lapply(unique(structures$strain),function(given_strain){
db_folder = sprintf("data/QTOF/databases/%s",given_strain)
cmd = sprintf("cut -d' ' -f2 %s/library.info | paste %s/library.smiles - | obabel -ismi -osmi > %s/smiles.smi",
db_folder,db_folder,db_folder)
system(cmd)
return(NULL)
})
lapply(unique(structures$strain),function(given_strain){
db_folder = sprintf("data/QTOF/databases/%s",given_strain)
cmd = sprintf("obabel -ismi %s/smiles.smi -ofs -xfMACCS",
db_folder,db_folder,db_folder)
system(cmd)
return(NULL)
})